Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Recyclable liquid crystal polymeric sensor beads based on the assistance of radially aligned liquid crystals

Abstract

In this study, we first demonstrate the synthesis of recyclable polymer beads for Cu2+ sensing based on radially aligned liquid crystal (LC) assistance. To detect metal ions in water, sensing probe monomers and polymers derived from rhodamine B were synthesized. Recyclable polymeric LC beads were prepared from LC monomers RM257 and RM105, a nonreactive mesogen of 5CB and a rhodamine B-derived monomer. Due to the assistance of radially aligned LCs, highly sterically hindered spirocyclic terminal groups of rhodamine B-derived monomers were aligned and fixed at the outer surface of liquid crystal beads. The color of the polymeric LC beads changed from light pink to deep pink after the beads were dropped into an aqueous Cu2+ solution. The results were ascribed to the spiro ring-opening mechanism. The addition of a nonreactive mesogen resulted in the porous structure of the polymeric LC beads. The high sensitivity of the Cu2+ solution using polymeric LC beads was confirmed. The fabricated polymeric LC beads were recycled by putting the polymeric LC beads into aqueous ammonia. The removal of Cu2+ from polymeric LC beads was due to the formation of [Cu(NH3)4]2+. This recyclable LC bead sensor is an easy method for the detection of metal ions in aqueous solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiao Z, Zhang P, Chen H, Li C, Chen L, Fan H, et al. Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sens Actuators B Chem. 2019;295:110–6.

    Article  CAS  Google Scholar 

  2. Araoka F, Shin KC, Takanishi Y, Ishikawa K, Takezoe H, Zhu Z, et al. How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing. J Appl Phys. 2003;94:279–83.

    Article  CAS  Google Scholar 

  3. Raghunandhan R, Chen LH, Long HY, Leam LL, So PL, Ning X, et al. Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection. Sens Actuators B Chem. 2016;233:31–8.

    Article  CAS  Google Scholar 

  4. Denis M, Pancholi J, Jobe K, Watkinson M, Goldup SM. Chelating rotaxane ligands as fluorescent sensors for metal ions. Angew Chem Int Ed. 2018;57:5310–4.

    Article  CAS  Google Scholar 

  5. Lee SJ, Lee JE, Seo J, Jeong IY, Lee SS, Jung JH. Optical sensor based on nanomaterial for the selective detection of toxic metal ions. Adv Funct Mater. 2007;17:3441–6.

    Article  CAS  Google Scholar 

  6. Molina P, Tárraga A, Caballero A. Ferrocene‐based small molecules for multichannel molecular recognition of cations and anions. Eur J Inorg Chem. 2008;2008:3401–17.

    Article  CAS  Google Scholar 

  7. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Tech Adv Mater. 2005;6:335–40.

    Article  CAS  Google Scholar 

  8. Harzat A, Ezzat K, Ikram I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:6730305.

    Google Scholar 

  9. Mehrandish R, Rahimian A, Shahriary A. Heavy metals detoxification: a review of herbal compounds for chelation therapy in heavy metals toxicity. J Herbmed Pharm. 2019;8:69–77.

    Article  CAS  Google Scholar 

  10. Baatrup E. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comp Biochem Physiol. 1991;100:253–7.

    CAS  Google Scholar 

  11. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritits I. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–15.

    Article  CAS  PubMed  Google Scholar 

  12. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014;88:1929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valfredo AL, Elenir SS, Ednilton MG. A comparative study of two sorbents for copper in a flow injection preconcentration system. Sep Purif Technol. 2007;56:212–9.

    Article  CAS  Google Scholar 

  14. Santos EM, Ball JS, Williams TD, Wu H, Ortega F, Aerle RV, et al. Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a dish model. Environ Sci Technol. 2010;44:820–6.

    Article  CAS  PubMed  Google Scholar 

  15. Skibniewski M, Skibniewska EM, Kosia T, Olbrych K. The content of copper and molybdenum in the liver, kidneys, and skeletal muscles of elk (Alces alces) from North-Eastern Poland. Biol Trace Elem Res. 2016;169:204–10.

    Article  CAS  PubMed  Google Scholar 

  16. Marwa AI, Mai DI. Acrylamide‐induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). Environ Toxicol. 2020;35:300–8.

    Article  CAS  Google Scholar 

  17. Li Q, Liu H, Alattar M, Jiang S, Han J, Ma Y. et al. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Sci Rep.2015;5:16936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iamsaard S, Anger E, Aßhoff SJ, Depauw A, Fletcher SP, Katsonis N. Fluorinated azobenzenes for shape‐persistent liquid crystal polymer networks. Angew Chem Int Ed. 2016;55:9908–12.

    Article  CAS  Google Scholar 

  19. Keith JM, King JA, Miller MG, Tomson AM. Thermal conductivity of carbon fiber/liquid crystal polymer composites. J Appl Poly Sci. 2006;102:5456–62.

    Article  CAS  Google Scholar 

  20. Cattle J, Bao P, Bramble JP, Bushby RJ, Evans SD, Lydon JE, et al. Controlled planar alignment of discotic liquid crystals in microchannels made using SU8 photoresist. Adv Funct Mater. 2013;23:5997–6006.

    Article  CAS  Google Scholar 

  21. Serra F, Eaton SM, Cerbino R, Buscaglia M, Cerullo G, Osellame R, et al. Nematic liquid crystals embedded in cubic microlattices: memory effects and bistable pixels. Adv Funct Mater. 2013;23:3990–4.

    Article  CAS  Google Scholar 

  22. Yu H, Szilvási T, Rai P, Twieg RJ, Mavrikakis M, Abbott NL. Computational chemistry‐guided design of selective chemoresponsive liquid crystals using pyridine and pyrimidine functional groups. Adv Funct Mater. 2018;28:1703581.

    Article  CAS  Google Scholar 

  23. Bögels GM, Lugger JAM, Goor OJGM, Sijbesma RP. Size‐selective binding of sodium and potassium ions in nanoporous thin films of polymerized liquid crystals. Adv Funct Mater. 2016;26:8023–30.

    Article  CAS  Google Scholar 

  24. Jung YD, Khan M, Park SY. Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics. J Mater Chem B. 2014;2:4922–8.

    Article  CAS  PubMed  Google Scholar 

  25. Wang N, Evans JS, Liu Q, Wang S, Khoo IC, He S. Electrically controllable self-assembly for radial alignment of gold nanorods in liquid crystal droplets. Opt Mat Express. 2015;5:1065–70.

    Article  CAS  Google Scholar 

  26. Lee JH, Kamel T, Roth SV, Zhang P, Park SY. Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell. RSC Adv. 2014;4:40617.

    Article  CAS  Google Scholar 

  27. Wang Y, Chang H, Wu W, Peng W, Yan Y, He C, et al. Rhodamine 6 G hydrazone bearing pyrrole unit: ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Sens Actuators B Chem. 2016;228:395–400.

    Article  CAS  Google Scholar 

  28. Doumani N, Maroun EB, Maalouly J, Tueni M, Dubois A, Bernhard C, et al. A new pH-dependent macrocyclic rhodamine B-based fluorescent probe for copper detection in white wine. Sensors. 2019;19:4514.

  29. Maji A, Lohar S, Pal S, Chattopadhyay P. A New rhodamine based ‘turn-on’ Cu2+ ion selective chemosensor in aqueous system applicable in bioimaging. J Chem Sci. 2017;129:1423–30.

    Article  CAS  Google Scholar 

  30. Li XM, Zhao R, Yang Y, Lv XW, Wei YL, Tan R, et al. A Rhodamine-based fluorescent sensor for chromium ions and its application in bioimaging. Chin Chem Lett. 2017;28:1258–61.

    Article  CAS  Google Scholar 

  31. Wang J, Long L, Xiao G, Fang F. Reversible fluorescent turn-on sensors for Fe3+ based on a receptor composed of tri-oxygen atoms of amide groups in water. Open Chem. 2018;16:1268–74.

    Article  CAS  Google Scholar 

  32. Cui P, Jiang X, Sun J, Zhang Q, Gao F. A water-soluble rhodamine B-derived fluorescent probe for pH monitoring and imaging in acidic regions. Methods Appl Fluoresc. 2017;5:024009.

    Article  PubMed  CAS  Google Scholar 

  33. Singh SK, Nandi R, Mishra K, Singh HK, Singh RK, Singh B. Liquid crystal based sensor system for the real time detection of mercuric ions in water using amphiphilic dithiocarbamate. Sens Actuators B Chem. 2016;226:381–7.

    Article  CAS  Google Scholar 

  34. Han GR, Jang CH. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations. Talanta. 2014;128:44–50.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Z, Zhang L, Guo R, Xiang T, Wu C, Zheng Z, et al. A highly sensitive and selective colorimetric and off–on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sens Actuators B Chem. 2011;156:546–52.

    Article  CAS  Google Scholar 

  36. Xu L, Xu Y, Zhu W, Zeng B, Yang C, Wu B, et al. Versatile trifunctional chemosensor of rhodamine derivative for Zn2+, Cu2+ and His/Cys in aqueous solution and living cell. Org Biomol Chem. 2011;9:8284–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jun Y, Péter S, Daniel AP, John MDS, Corrie TI, Antal J, et al. Spherical-cap droplets of a photo-responsive bent liquid crystal dimer. Soft Matter. 2019;15:989–98.

    Article  Google Scholar 

  38. Poon CK, Tang O, Chen XM, Kim B, Hartlieb M, Pollock CA. et al. Fluorescent labeling and biodistribution of latex nanoparticles formed by surfactant-free RAFT emulsion polymerization. Macromol Biosci. 2017;17:1600366.

    Article  CAS  Google Scholar 

  39. Kumar D, Talreja N. Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+. Korean J Chem Eng. 2019;36:126–35.

    Article  CAS  Google Scholar 

  40. Tseng MH, Hu CC, Chiu TC. A fluorescence turn-on probe for sensing thiodicarb using rhodamine B functionalized gold nanoparticles. Dyes Pigm. 2019;171:107674.

    Article  CAS  Google Scholar 

  41. Saha S, Chhatbar MU, Mahato P, Praveen L, Siddhanta AK, Das A. Rhodamine–alginate conjugate as self indicating gel beads for efficient detection and scavenging of Hg2+ and Cr3+ in aqueous media. Chem Commun. 2012;48:1659–61.

    Article  CAS  Google Scholar 

  42. Wnag D, Park SY, Kang IK. Liquid crystals: emerging materials for use in real-time detection applications. J Mater Chem C. 2015;3:9038–47.

    Article  CAS  Google Scholar 

  43. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev. 2008;37:1465–72.

    Article  CAS  PubMed  Google Scholar 

  44. Niu X, Luo D, Chen R, Wang F. Optical biosensor based on liquid crystal droplets for detection of cholic acid. Opt Commun. 2016;381:286–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology (MOST) of the Republic of China (Taiwan) for financially supporting this research under contract MOST 107-2923-E-006-001 and MOST 108-2218-E-006-049. This research was also supported in part by the Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yen Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JH., Hung, YH., Lin, SN. et al. Recyclable liquid crystal polymeric sensor beads based on the assistance of radially aligned liquid crystals. Polym J 53, 373–383 (2021). https://doi.org/10.1038/s41428-020-00428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00428-0

Search

Quick links