Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Experimental and numerical study on transient elongational viscosity for PP/LDPE blends

A Correction to this article was published on 09 January 2020

This article has been updated

Abstract

The transient uniaxial elongational viscosity for binary blends composed of polypropylene (PP) and low-density polyethylene (LDPE) was evaluated. A strain hardening behavior is detected for the blends, although LDPE is a dispersed phase. This behavior is attributed to LDPE dispersion deformation; the LDPE forms rigid fibers because of strain hardening. Rheological properties are calculated numerically by the Phan–Thien Tanner model by assuming a symmetric geometry with a periodic structure. Based on the simulation, we propose an appropriate LDPE to modify the processability of PP, for which the strain hardening in the elongational viscosity is required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 09 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Yamaguchi M, Miyata H. Strain hardening behavior in elongational viscosity for binary blends of linear polymer and crosslinked polymer. Polym. J. 2000;32:164–70.

    Article  CAS  Google Scholar 

  2. Sugimoto M, Masubuchi T, Takimoto J, Koyama K. Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. Uniaxial and biaxial extensional flow. Macromolecules. 2001;34:6056–63.

    CAS  Google Scholar 

  3. Kurose T, Takahashi T, Sugimoto M, Taniguchi T, Koyama K. Uniaxial elongational viscosity of PC/ A small amount of PTFE blend. Nihon Reoroji Gakkaishi. 2005;33:173–82.

    Article  CAS  Google Scholar 

  4. Yamaguchi M, Wakabayashi T. Rheological properties and processability of chemically modified poly(ethylene terephthalate-co-ethylene isophthalate). Adv. Polym. Technol. 2006;25:236–41.

    Article  CAS  Google Scholar 

  5. Mieda N, Yamaguchi M. Flow instability for binary blends of linear polyethylene and long-chain branched polyethylene. J. Non-Newtonian Fluid Mech. 2011;166:231–40.

    Article  CAS  Google Scholar 

  6. Yokohara T, Nobukawa S, Yamaguchi M. Rheological properties of polymer composites with flexible fine fiber. J. Rheology. 2011;55:1205–18.

    Article  CAS  Google Scholar 

  7. Yamaguchi M, Yokohara T, Ali MAB. Effect of flexible fibers on rheological properties of poly(lactic acid) composites under elongational flow. Nihon Reoroji Gakkaishi. 2013;41:129–35.

    Article  CAS  Google Scholar 

  8. Siriprumpoonthum M, Nobukawa S, Satoh Y, Sasaki H, Yamaguchi M. Effect of thermal modification on rheological properties of polyethylene blends. J. Rheology. 2014;58:449–66.

    Article  CAS  Google Scholar 

  9. Seemork J, Sako T, Ali MAB, Yamaguchi M. Rheological response under non-isothermal stretching for immiscible blends of isotactic polypropylene and acrylate polymer. J. Rheology. 2017;61:1–11.

    Article  CAS  Google Scholar 

  10. Fujii Y, Nishikawa R, Phulkerd P, Yamaguchi M. Modifying the rheological properties of polypropylene under elongational flow by adding polyethylene. J. Rheology. 2019;63:11–18.

    Article  CAS  Google Scholar 

  11. Batchelor GK. The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech. 1971;1971:813–29.

    Article  Google Scholar 

  12. Mewis J, Metzner AB. The rheological properties of suspensions of fibres in Newtonian fluids subjected to extensional deformations. J. Fluid Mech. 1974;62:593–600.

    Article  Google Scholar 

  13. Laun HM. Orientation effects and rheology of short glass fiber-reinforced thermoplastics. Colloid Polym. Sci. 1984;262:257–69.

    Article  CAS  Google Scholar 

  14. Toose EM, Geurts BJ, Kuerten JMG. A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow. J. Non-Newtonian Fluid Mech. 1995;60:129–54.

    Article  CAS  Google Scholar 

  15. Delaby I, Ernst B, Froelich D, Muller R. Droplet deformation in immiscible polymer blends during transient uniaxial elongational flow. Polym. Eng. Sci. 1996;36:1627–35.

    Article  CAS  Google Scholar 

  16. Ramaswamy S, Leal LG. The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid. J. Non-Newtonian Fluid Mech. 1999;85:127–63.

    Article  CAS  Google Scholar 

  17. Ramaswamy S, Leal LG. The deformation of a Newtonian drop in the uniaxial extensional flow of a viscoelastic liquid. J. Non-Newtonian Fluid Mech. 1999;88:149–72.

    Article  CAS  Google Scholar 

  18. Hooper RW, de Almeida VF, Macosko CW, Derby JJ. Transient polymeric drop extension and retraction in uniaxial extensional flows. J. Non-Newtonian Fluid Mech. 2001;98:141–68.

    Article  CAS  Google Scholar 

  19. Cristini V, Hooper RW, Macosko CW, Simeone M, Guido S. A numerical and experimental investigation of lamellar blend morphologies. Ind. Eng. Chem. Res. 2002;41:6305–11.

    Article  CAS  Google Scholar 

  20. Mukherjee S, Sarkar K. Effects of viscosity ratio on deformation of a viscoelastic drop in a Newtonian matrix under steady shear. J. Non-Newtonian Fluid Mech. 2009;160:104–12.

    Article  CAS  Google Scholar 

  21. Cardinaels R, Afkhami S, Renardy Y, Moldenaers P. An experimental and numerical investigation of the dynamics of microconfined droplets in systems with one viscoelastic phase. J. Non-Newtonian Fluid Mech. 2011;166:52–62.

    Article  CAS  Google Scholar 

  22. Skartilien R, Sollum E, Akselsen A, Meakin P. Direct numerical simulation of surfactant-stabilized emulsions. Rheol. Acta. 2012;51:649–73.

    Article  Google Scholar 

  23. Isbassarov D, Rosti ME, Ardekani MN, Sarabian M, Hormozi LB, Tammisola O. Computational modeling of multiphase viscoelastic and elastoviscoplastic flows. Int. J. Numerical Methods Fluids. 2018;88:521–43.

    Article  Google Scholar 

  24. Hwang WR, Hulsen M. Direct numerical simulations of hard particle suspensions in planar elongational flow. J. Non-Newtonian Fluid Mech. 2006;136:167–78.

    Article  CAS  Google Scholar 

  25. D'Avino G, Maffettone PL, Hulsen MA, Peters GWM. A numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed grid. J. Comp. Phys. 2007;226:688–711.

    Article  Google Scholar 

  26. Ahamdi M, Harlen OG. A Lagrangian finite element method for simulation of a suspension under planar extensional flow. J. Comp. Phys. 2008;227:7543–60.

    Article  Google Scholar 

  27. Phan-Thien N, Tanner RI. A new constitutive equation derived from network theory. J. Non-Newtonian Fluid Mech. 1977;2:353–65.

    Article  Google Scholar 

  28. Otsuki Y, Umeda T, Tsunori R, Shinohara M. Viscoelastic simulation of deformation-induced bubble coalescence in foaming process. Nihon Reoroji Gakkaishi. 2005;33:9–16.

    Article  CAS  Google Scholar 

  29. Otsuki Y, Kajiwara T, Funatsu K. Numerical simulations of annular extrudate swell using various types of viscoelastic models. Polym. Eng. Sci. 1999;39:1969–81.

    Article  CAS  Google Scholar 

  30. Matsunaga K, Kajiwara T, Funatsu K. Numerical simulation of multi‐layer flow for polymer melts—A study of the effect of viscoelasticity on interface shape of polymers within dies. Polym. Eng. Sci. 1998;38:1099–111.

    Article  Google Scholar 

  31. Tackx P, Tacx JCJF. Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS). Polymer. 1998;39:3109–13.

    Article  CAS  Google Scholar 

  32. Yamaguchi M, Takahashi M. Rheological properties of low density polyethylenes produced by tubular and vessel processes. Polymer. 2001;42:8663–70.

    Article  CAS  Google Scholar 

  33. Mieda N, Yamaguchi M. Anomalous rheological response for binary blends of linear polyethylene and long-chain branched polyethylene. Adv. Polym. Technol. 2007;26:173–81.

    Article  CAS  Google Scholar 

  34. Levitt L, Macosko CW, Pearson SD. Influence of normal stress difference on polymer drop deformation. Polym. Eng. Sci. 1996;36:1647–55.

    Article  CAS  Google Scholar 

  35. Goddard JD. Tensile stress contribution of flow-oriented slender particles in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 1976;1:1–17.

    Article  Google Scholar 

  36. Pipes RB, Hearle JWS, Beaussart AJ, Sastry AM, Okine RK. A constitutive relation for the viscous flow of an oriented fiber assembly. J. Compos. Mater. 1991;25:1204–17.

    Article  Google Scholar 

  37. Carrara AS, Mcgarry FJ. Matrix and interface stresses in a discontinuous fibre. composite model. J. Comp. Mat. 1968;2:222–43.

    Article  CAS  Google Scholar 

  38. Harris, B, Engineering Composite Materials, 2nd ed. Leeds: Maney Publishing; 1999.

  39. Goh KL, Mathias KJ, Aspden RM, Hukins DWH. Finite element analysis of the effect of fibre shape on stresses in an elastic fibre surrounded by a plastic matrix. J. Mater. Sci. 2000;35:2493–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasuhiko Otsuki or Masayuki Yamaguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuki, Y., Fujii, Y., Sasaki, H. et al. Experimental and numerical study on transient elongational viscosity for PP/LDPE blends. Polym J 52, 529–538 (2020). https://doi.org/10.1038/s41428-019-0286-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0286-0

This article is cited by

Search

Quick links