Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T lymphocytes in the intestinal mucosa: defense and tolerance

Abstract

Although lymphocytes are known to circulate throughout lymphoid tissues and blood, they also establish residency in nonlymphoid organs, most prominently in barrier tissues, such as the intestines. The adaptation of T lymphocytes to intestinal environments requires constant discrimination between natural stimulation from commensal flora and food and pathogens that need to be cleared. Genetic variations that cause a defective defense or a break in tolerance along with environmental cues, such as infection or imbalances in the gut microbiota known as dysbiosis, can trigger several immune disorders via the activation of T lymphocytes in the intestines. Elucidation of the immune mechanisms that distinguish between commensal flora and pathogenic organisms may reveal therapeutic targets for the prevention or modulation of inflammatory diseases and boost the efficacy of cancer immunotherapy. In this review, we discuss the development and adaptation of T lymphocytes in the intestine, how these cells protect the host against pathogenic infections while tolerating food antigens and commensal microbiota, and the potential implications of targeting these cells for disease management and therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Darlington, D. & Rogers, A. W. Epithelial lymphocytes in the small intestine of the mouse. J. Anat. 100, 813–830 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeitz, M. et al. Phenotype and function of lamina propria T lymphocytes. Immunol. Res. 10, 199–206 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Hayday, A. & Gibbons, D. Brokering the peace: the origin of intestinal T cells. Mucosal Immunol. 1, 172–174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bai, L. & Peng, H. Generating CD8alphaalpha IELs from two sources of thymic precursors. Cell Mol. Immunol. 15, 640–641 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hogquist, K. A., Baldwin, T. A. & Jameson, S. C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Baldwin, T. A., Hogquist, K. A. & Jameson, S. C. The fourth way? Harnessing aggressive tendencies in the thymus. J. Immunol. 173, 6515–6520 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135–141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Agace, W. W. T-cell recruitment to the intestinal mucosa. Trends Immunol. 29, 514–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iijima, N. & Iwasaki, A. Tissue instruction for migration and retention of TRM cells. Trends Immunol. 36, 556–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Svensson, M. et al. CCL25 mediates the localization of recently activated CD8alphabeta(+) lymphocytes to the small-intestinal mucosa. J. Clin. Invest. 110, 1113–1121 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hieshima, K. et al. CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J. Immunol. 170, 1452–1461 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kunkel, E. J. et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J. Exp. Med. 192, 761–768 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, Y. & Mu, L. An expanding stage for commensal microbes in host immune regulation. Cell Mol. Immunol. 14, 339–348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner, N. et al. Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature 382, 366–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Pahar, B., Lackner, A. A. & Veazey, R. S. Intestinal double-positive CD4+ CD8+ T cells are highly activated memory cells with an increased capacity to produce cytokines. Eur. J. Immunol. 36, 583–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, X., Das, A., Lackner, A. A., Veazey, R. S. & Pahar, B. Intestinal double-positive CD4+ CD8+ T cells of neonatal rhesus macaques are proliferating, activated memory cells and primary targets for SIVMAC251 infection. Blood 112, 4981–4990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tiberio, L. et al. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol. Immunol. 15, 346–352 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Mikulic, J., Longet, S., Favre, L., Benyacoub, J. & Corthesy, B. Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-beta. Cell Mol. Immunol. 14, 546–556 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shan, M. et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447–453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Welty, N. E. et al. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210, 2011–2024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8, 1086–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheroutre, H. & Lambolez, F. Doubting the TCR coreceptor function of CD8alphaalpha. Immunity 28, 149–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, Y. et al. Mucosal memory CD8(+) T cells are selected in the periphery by an MHC class I molecule. Nat. Immunol. 12, 1086–1095 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malamut, G. et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J. Clin. Invest. 120, 2131–2143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma, L. J., Acero, L. F., Zal, T. & Schluns, K. S. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8alphaalpha IELs. J. Immunol. 183, 1044–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klose, C. S. et al. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8alphaalpha(+) intraepithelial lymphocyte development. Immunity 41, 230–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Reis, B. S., Hoytema van Konijnenburg, D. P., Grivennikov, S. I. & Mucida, D. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity 41, 244–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, X. F. et al. Preferential loss of gut-homing alpha 4 beta 7 CD4(+) T cells and their circulating functional subsets in acute HIV-1 infection. Cell. Mol. Immunol. 13, 776–784 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Klatt, N. R., Funderburg, N. T. & Brenchley, J. M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol. 21, 6–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Bhaijee, F., Subramony, C., Tang, S. J. & Pepper, D. J. Human immunodeficiency virus-associated gastrointestinal disease: common endoscopic biopsy diagnoses. Pathol. Res. Int. 2011, 247923 (2011).

    Article  Google Scholar 

  44. Dharakul, T., Rott, L. & Greenberg, H. B. Recovery from chronic rotavirus infection in mice with severe combined immunodeficiency—virus clearance mediated by adoptive transfer of immune Cd8+ lymphocytes-T. J. Virol. 64, 4375–4382 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Adkins, B., Leclerc, C. & Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4, 553–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kuo, S., El Guindy, A., Panwala, C. M., Hagan, P. M. & Camerini, V. Differential appearance of T cell subsets in the large and small intestine of neonatal mice. Pediatr. Res. 49, 543–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Williams, A. M. et al. Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse. Immunology 119, 470–478 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Swamy, M. et al. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat. Commun. 6, 7090 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tomov, V. T. et al. Persistent enteric murine norovirus infection is associated with functionally suboptimal virus-specific CD8 T cell responses. J. Virol. 87, 7015–7031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McNeal, M. M. et al. CD4 T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6 protein and the adjuvant LT(R192G). J. Virol. 76, 560–568 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomov, V. T. et al. Differentiation and protective capacity of virus-specific CD8(+) T cells suggest murine norovirus persistence in an immune-privileged enteric niche. Immunity 47, 723–738 e725 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen, H. B. & Chen, Z. W. The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell. Mol. Immunol. 15, 216–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Zenewicz, L. A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29, 947–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40, 747–757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Romagnoli, P. A. et al. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Mucosal Immunol. 10, 520–530 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thiemann, S. et al. Enhancement of IFNgamma production by distinct commensals ameliorates salmonella-induced disease. Cell Host Microbe 21, 682–694 e685 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Bilate, A. M. & Lafaille, J. J. Induced CD4(+)Foxp3(+) regulatory T cells in immune tolerance. Annu. Rev. Immunol. 30, 733–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Boll, G. & Reimann, J. Lamina propria T-cell subsets in the small and large-intestine of euthymic and athymic mice. Scand. J. Immunol. 42, 191–201 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 107, 12204–12209 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Dolpady, J. et al. Oral probiotic VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting Indoleamine 2,3-dioxygenase-enriched tolerogenic intestinal environment. J. Diabetes Res. 2016, 7569431 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Buning, J. et al. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class II-restricted antigen processing and origin of exosomes. Immunology 125, 510–521 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sicherer, S. H. & Sampson, H. A. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J. Allergy Clin. Immunol. 133, 291–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Meresse, B., Ripoche, J., Heyman, M. & Cerf-Bensussan, N. Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal Immunol. 2, 8–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Podolsky, D. K. Inflammatory bowel disease (2). N. Engl. J. Med. 325, 1008–1016 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Neurath, M. F. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 14, 269–278 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, T. C. & Stappenbeck, T. S. Genetics and pathogenesis of inflammatory bowel disease. Annu. Rev. Pathol.: Mech. Dis., Vol. 11 11, 127–148 (2016).

    Article  CAS  Google Scholar 

  77. Seo, S. U. et al. Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42, 744–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ramanan, D. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science 352, 608–612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Leppkes, M. et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136, 257–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Wedebye Schmidt, E. G. et al. TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm. Bowel Dis. 19, 1567–1576 (2013).

    Article  PubMed  Google Scholar 

  82. Berg, D. J. et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J. Clin. Invest. 98, 1010–1020 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ostanin, D. V. et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G135–G146 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Fuss, I. J. et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm. Bowel Dis. 12, 9–15 (2006).

    Article  PubMed  Google Scholar 

  85. Monteleone, G. et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 112, 1169–1178 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Monteleone, I., Pallone, F. & Monteleone, G. Th17-related cytokines: new players in the control of chronic intestinal inflammation. BMC Med. 9, 122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Neurath, M. F. IL-23: a master regulator in Crohn disease. Nat. Med. 13, 26–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. De Nitto, D., Sarra, M., Cupi, M. L., Pallone, F. & Monteleone, G. Targeting IL-23 and Th17-cytokines in inflammatory bowel diseases. Curr. Pharm. Des. 16, 3656–3660 (2010).

    Article  PubMed  Google Scholar 

  90. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reinisch, W. et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut 55, 1138–1144 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maxwell, J. R. et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43, 739–750 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Awasthi, A. & Kuchroo, V. K. IL-17A directly inhibits TH1 cells and thereby suppresses development of intestinal inflammation. Nat. Immunol. 10, 568–570 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. El-Behi, M. et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Codarri, L. et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Tjon, J. M., van Bergen, J. & Koning, F. Celiac disease: how complicated can it get? Immunogenetics 62, 641–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Keuning, J. J., Pena, A. S., van Leeuwen, A., van Hooff, J. P. & va Rood, J. J. HLA-DW3 associated with coeliac disease. Lancet 1, 506–508 (1976).

    Article  CAS  PubMed  Google Scholar 

  100. Stepniak, D. & Koning, F. Celiac disease—sandwiched between innate and adaptive immunity. Hum. Immunol. 67, 460–468 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Ju, J. M., Marietta, E. V. & Murray, J. A. Generating transgenic mouse models for studying Celiac disease. Methods Mol. Biol. 1326, 23–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Yokoyama, S., Takada, K., Hirasawa, M., Perera, L. P. & Hiroi, T. Transgenic mice that overexpress human IL-15 in enterocytes recapitulate both B and T cell-mediated pathologic manifestations of celiac disease. J. Clin. Immunol. 31, 1038–1044 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cellier, C. et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French Coeliac Disease Study Group. Lancet 356, 203–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Mention, J. J. et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125, 730–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Di Sabatino, A. et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 55, 469–477 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Maiuri, L. et al. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 119, 996–1006 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Eksteen, B. et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9 + gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J. Exp. Med. 200, 1511–1517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Seidel, D. et al. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice. Hepatology 59, 601–611 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Ali, A. H., Carey, E. J. & Lindor, K. D. Current research on the treatment of primary sclerosing cholangitis. Intractable Rare Dis. Res. 4, 1–6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Petrovic, A. et al. LPAM (alpha 4 beta 7 integrin) is an important homing integrin on alloreactive T cells in the development of intestinal graft-versus-host disease. Blood 103, 1542–1547 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Murai, M. et al. Peyer’s patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nat. Immunol. 4, 154–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 108(Suppl 1), 4615–4622 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Yang, X. D. et al. A predominant role of integrin alpha 4 in the spontaneous development of autoimmune diabetes in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA 91, 12604–12608 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Hanninen, A., Salmi, M., Simell, O. & Jalkanen, S. Mucosa-associated (beta 7-integrinhigh) lymphocytes accumulate early in the pancreas of NOD mice and show aberrant recirculation behavior. Diabetes 45, 1173–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, X. D., Sytwu, H. K., McDevitt, H. O. & Michie, S. A. Involvement of beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in the development of diabetes in obese diabetic mice. Diabetes 46, 1542–1547 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, H. et al. Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. Proc. Natl. Acad. Sci. USA 114, 10443–10448 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Marino, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Hebbandi Nanjundappa, R. et al. A gut microbial mimic that hijacks diabetogenic autoreactivity to suppress colitis. Cell 171, 655–667 e617 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Erdman, S. E. & Poutahidis, T. Roles for inflammation and regulatory T cells in colon cancer. Toxicol. Pathol. 38, 76–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2018YFA0508000) (S.Z.); the National Natural Science Foundation of China (81822021, 91842105, 31770990, 81788101 and 81821001) (S.Z.), and (81871284) (H.M.); and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29030101) (S.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Tao, W. & Zhu, S. T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol Immunol 16, 216–224 (2019). https://doi.org/10.1038/s41423-019-0208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0208-2

Keywords

This article is cited by

Search

Quick links