Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species

Abstract

Mitophagy plays an important role in the maintenance of mitochondrial homeostasis and can be categorized into two types: ubiquitin-mediated and receptor-mediated pathways. During receptor-mediated mitophagy, mitophagy receptors facilitate mitophagy by tethering the isolation membrane to mitochondria. Although at least five outer mitochondrial membrane proteins have been identified as mitophagy receptors, their individual contribution and interrelationship remain unclear. Here, we show that HeLa cells lacking BNIP3 and NIX, two of the five receptors, exhibit a complete loss of mitophagy in various conditions. Conversely, cells deficient in the other three receptors show normal mitophagy. Using BNIP3/NIX double knockout (DKO) cells as a model, we reveal that mitophagy deficiency elevates mitochondrial reactive oxygen species (mtROS), which leads to activation of the Nrf2 antioxidant pathway. Notably, BNIP3/NIX DKO cells are highly sensitive to ferroptosis when Nrf2-driven antioxidant enzymes are compromised. Moreover, the sensitivity of BNIP3/NIX DKO cells is fully rescued upon the introduction of wild-type BNIP3 and NIX, but not the mutant forms incapable of facilitating mitophagy. Consequently, our results demonstrate that BNIP3 and NIX-mediated mitophagy plays a role in regulating mtROS levels and protects cells from ferroptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BNIP3 and NIX redundantly contribute to various types of mitophagy in HeLa cells.
Fig. 2: Mitophagy mediated by BNIP3 and NIX plays a crucial role in maintaining mitochondrial function.
Fig. 3: The Nrf2-antioxidant pathway compensates for the loss of mitophagy.
Fig. 4: Mitophagy suppresses ferroptosis induced by compromising antioxidant enzymes.
Fig. 5: Schemes of responses to several oxidative stresses in WT and mitophagy-deficient cells.

Similar content being viewed by others

Data availability

All relevant data are available from the authors. Original immunoblot data are provided in the Supplemental Material.

References

  1. Gambert S, Ricquier D. Mitochondrial thermogenesis and obesity. Curr Opin Clin Nutr Metab Care. 2007;10:664–70.

    Article  CAS  PubMed  Google Scholar 

  2. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wanders RJ, Ruiter JP, IJLst L, Waterham HR, Houten SM. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis. 2010;33:479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20:1013–22.

    Article  CAS  PubMed  Google Scholar 

  5. Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28:R170–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ganley IG, Simonsen A. Diversity of mitophagy pathways at a glance. J Cell Sci. 2022;135:23.

  7. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183:795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010;11:45–51.

    Article  CAS  PubMed  Google Scholar 

  12. Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson Å. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem. 2012;287:19094–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14:177–85.

    Article  PubMed  Google Scholar 

  14. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6:7527.

    Article  PubMed  Google Scholar 

  15. Bhujabal Z, Birgisdottir Å, Sjøttem E, Brenne HB, Øvervatn A, Habisov S, et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 2017;18:947–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  18. Oh SJ, Ikeda M, Ide T, Hur KY, Lee MS. Mitochondrial event as an ultimate step in ferroptosis. Cell Death Discov. 2022;8:414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chourasia AH, Tracy K, Frankenberger C, Boland ML, Sharifi MN, Drake LE, et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 2015;16:1145–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Sullivan TE, Johnson LR, Kang HH, Sun JC. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity. 2015;43:331–42.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yamashita SI, Kanki T. Detection of iron depletion- and hypoxia-induced mitophagy in mammalian cells. Methods Mol Biol. 2018;1782:315–24.

    Article  CAS  PubMed  Google Scholar 

  22. Igarashi R, Yamashita SI, Yamashita T, Inoue K, Fukuda T, Fukuchi T, et al. Gemcitabine induces Parkin-independent mitophagy through mitochondrial-resident E3 ligase MUL1-mediated stabilization of PINK1. Sci Rep. 2020;10:1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005;1:84–91.

    Article  CAS  PubMed  Google Scholar 

  25. Park SJ, Shin JH, Kim ES, Jo YK, Kim JH, Hwang JJ, et al. Mitochondrial fragmentation caused by phenanthroline promotes mitophagy. FEBS Lett. 2012;586:4303–10.

    Article  CAS  PubMed  Google Scholar 

  26. Allen GF, Toth R, James J, Ganley IG. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 2013;14:1127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamashita SI, Jin X, Furukawa K, Hamasaki M, Nezu A, Otera H, et al. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol. 2016;215:649–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Félix AA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22:879–88.

    Article  CAS  PubMed  Google Scholar 

  29. Rojansky R, Cha MY, Chan DC. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife. 2016;5:e17896

  30. Denison SR, Wang F, Becker NA, Schüle B, Kock N, Phillips LA, et al. Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene. 2003;22:8370–8.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia M, Huang R, Sun Y, Semenza GL, Aldred SF, Witt KL, et al. Identification of chemical compounds that induce HIF-1alpha activity. Toxicol Sci. 2009;112:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sulkshane P, Ram J, Thakur A, Reis N, Kleifeld O, Glickman MH. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 2021;45:102047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38:167–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29:1727–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pap EH, Drummen GP, Winter VJ, Kooij TW, Rijken P, Wirtz KW, et al. Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY(581/591). FEBS Lett. 1999;453:278–82.

    Article  CAS  PubMed  Google Scholar 

  37. Hirata Y, Cai R, Volchuk A, Steinberg BE, Saito Y, Matsuzawa A, et al. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol. 2023;33:1282–94.e1285.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao JF, Rodger CE, Allen GFG, Weidlich S, Ganley IG. HIF1α-dependent mitophagy facilitates cardiomyoblast differentiation. Cell Stress. 2020;4:99–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilhelm LP, Zapata-Muñoz J, Villarejo-Zori B, Pellegrin S, Freire CM, Toye AM, et al. BNIP3L/NIX regulates both mitophagy and pexophagy. EMBO J. 2022;41:e111115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao Y, Zheng J, Wan H, Sun Y, Fu S, Liu S, et al. A mitochondrial SCF-FBXL4 ubiquitin E3 ligase complex degrades BNIP3 and NIX to restrain mitophagy and prevent mitochondrial disease. EMBO J. 2023;42:e113033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elcocks H, Brazel AJ, McCarron KR, Kaulich M, Husnjak K, Mortiboys H, et al. FBXL4 ubiquitin ligase deficiency promotes mitophagy by elevating NIX levels. EMBO J. 2023;42:e112799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen-Dien GT, Kozul KL, Cui Y, Townsend B, Kulkarni PG, Ooi SS, et al. FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. EMBO J. 2023;42:e112767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Niemi NM, Serrano LR, Muehlbauer LK, Balnis CE, Wei L, Smith AJ, et al. PPTC7 maintains mitochondrial protein content by suppressing receptor-mediated mitophagy. Nat Commun. 2023;14:6431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun Y, Cao Y, Wan H, Memetimin A, Li L, Wu C, et al. A mitophagy sensor PPTC7 controls BNIP3 and NIX degradation to regulate mitochondrial mass. Mol Cell. 2024;84:327–344.e329.

    Article  CAS  PubMed  Google Scholar 

  45. Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M, et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol. 2018;340:209–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Yen FS, Zhu XG, Timson RC, Weber R, Xing C, et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature. 2021;599:136–40.

    Article  CAS  PubMed  Google Scholar 

  47. Hosoi KI, Miyata N, Mukai S, Furuki S, Okumoto K, Cheng EH, et al. The VDAC2-BAK axis regulates peroxisomal membrane permeability. J Cell Biol. 2017;216:709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dubreuil MM, Morgens DW, Okumoto K, Honsho M, Contrepois K, Lee-McMullen B, et al. Systematic identification of regulators of oxidative stress reveals non-canonical roles for peroxisomal import and the pentose phosphate pathway. Cell Rep. 2020;30:1417–33.e1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okumoto K, El Shermely M, Natsui M, Kosako H, Natsuyama R, Marutani T, et al. The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. Elife. 2020;9:e55896

  50. Park H, He A, Tan M, Johnson JM, Dean JM, Pietka TA, et al. Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. J Clin Investig. 2019;129:694–711.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27:211–22.

    Article  CAS  PubMed  Google Scholar 

  52. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Zheng N, Ding X. Mitophagy disequilibrium, a prominent pathological mechanism in metabolic heart diseases. Diabetes Metab Syndr Obes. 2021;14:4631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gan B. Mitochondrial regulation of ferroptosis. J Cell Biol. 2021:220:e202105043

  56. Liang KX, Kristiansen CK, Mostafavi S, Vatne GH, Zantingh GA, Kianian A, et al. Disease-specific phenotypes in iPSC-derived neural stem cells with POLG mutations. EMBO Mol Med. 2020;12:e12146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vara-Pérez M, Rossi M, Van den Haute C, Maes H, Sassano ML, Venkataramani V, et al. BNIP3 promotes HIF-1α-driven melanoma growth by curbing intracellular iron homeostasis. EMBO J. 2021;40:e106214.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Simpson CL, Tokito MK, Uppala R, Sarkar MK, Gudjonsson JE, Holzbaur ELF. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Rep. 2021;34:108689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schmid ET, Pyo JH, Walker DW. Neuronal induction of BNIP3-mediated mitophagy slows systemic aging in. Nat Aging. 2022;2:494–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol. 2011;18:1042–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Feng Zhang (Broad Institute of MIT and Harvard) and Eric Campeau (University of Massachusetts Medical School) for providing plasmids and CCRF (Niigata University) for supporting FACS analysis.

Funding

This work was supported in part by the Japan Society for the Promotion of Science KAKENHI grants (16KK0162 and 22K07207 to SY and 19H05712, 18H04858, and 18H04691, to TK), AMED grant (JP21gm6110013, JP23ek0109647 and JP23gm1710006 to TK), and the Takeda Science Foundation (to SY).

Author information

Authors and Affiliations

Authors

Contributions

SY, YS, and TK designed the experiments. SY generated receptor KO cell lines using the CRIPSR/Cas9 genome editing system. SY performed all cellular analyses. YS, YM, and RM performed the metabolomic analysis. SY, KI, KF, TF, DCC, and TK wrote the manuscript.

Corresponding authors

Correspondence to Shun-ichi Yamashita or Tomotake Kanki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, Si., Sugiura, Y., Matsuoka, Y. et al. Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01280-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01280-y

Search

Quick links