Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensing of mitochondrial DNA by ZBP1 promotes RIPK3-mediated necroptosis and ferroptosis in response to diquat poisoning

Abstract

Diquat (DQ) poisoning is a severe medical condition associated with life-threatening implications and multiorgan dysfunction. Despite its clinical significance, the precise underlying mechanism remains inadequately understood. This study elucidates that DQ induces instability in the mitochondrial genome of endothelial cells, resulting in the accumulation of Z-form DNA. This process activates Z-DNA binding protein 1 (ZBP1), which then interacts with receptor-interacting protein kinase 3 (RIPK3), ultimately leading to RIPK3-dependent necroptotic and ferroptotic signaling cascades. Specific deletion of either Zbp1 or Ripk3 in endothelial cells simultaneously inhibits both necroptosis and ferroptosis. This dual inhibition significantly reduces organ damage and lowers mortality rate. Notably, our investigation reveals that RIPK3 has a dual role. It not only phosphorylates MLKL to induce necroptosis but also phosphorylates FSP1 to inhibit its enzymatic activity, promoting ferroptosis. The study further shows that deletion of mixed lineage kinase domain-like (Mlkl) and the augmentation of ferroptosis suppressor protein 1 (FSP1)-dependent non-canonical vitamin K cycling can provide partial protection against DQ-induced organ damage. Combining Mlkl deletion with vitamin K treatment demonstrates a heightened efficacy in ameliorating multiorgan damage and lethality induced by DQ. Taken together, this study identifies ZBP1 as a crucial sensor for DQ-induced mitochondrial Z-form DNA, initiating RIPK3-dependent necroptosis and ferroptosis. These findings suggest that targeting the ZBP1/RIPK3-dependent necroptotic and ferroptotic pathways could be a promising approach for drug interventions aimed at mitigating the adverse consequences of DQ poisoning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZBP1, RIPK3, and MLKL are crucial components for the development of fatal multiple organ injury induced by DQ.
Fig. 2: Specific deletion of Zbp1, Ripk3, and Mlkl in endothelial cells, rather than hematopoietic cells, provides protection against the fatal multiple organ injury induced by DQ.
Fig. 3: DQ induces mitochondrial damage to release Z-DNA and activate ZBP1.
Fig. 4: The Zα and RHIM domain facilitates the activation of ZBP1 and its interaction with RIPK3 to trigger cell death in response to DQ stimulation.
Fig. 5: ZBP1/RIPK3 mediates necroptosis and ferroptosis induced by DQ.
Fig. 6: DQ-triggered ferroptosis is mediated through the RIPK3/FSP1 axis.
Fig. 7: Vitamin K counteracts DQ induced cell death both in vitro and in vivo through restoring FSP1 activity.
Fig. 8: Schematic model.

Similar content being viewed by others

Data availability

The datasets used in the current study are available from the corresponding author (YX) upon reasonable request. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD045977. The single-cell sequencing data generated in this study have been deposited in the National Center for Biotechnology Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244858).The original western blot data are provided in Supplementary Materials (Original western blots).

References

  1. Magalhães N, Carvalho F, Dinis-Oliveira RJ. Human and experimental toxicology of diquat poisoning: Toxicokinetics, mechanisms of toxicity, clinical features, and treatment. Hum Exp Toxicol. 2018;37:1131–60.

    Article  PubMed  Google Scholar 

  2. Yu G, Wang J, Jian T, Shi L, Zhao L, Li Y, et al. Case series: diquat poisoning with acute kidney failure, myocardial damage, and rhabdomyolysis. Front Public Health. 2022;10:991587.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Meng N, Sun Y, Liu L, Yao D, Gao H, Ma Y, et al. [Clinical features of 86 cases of acute diquat poisoning]. Zhonghua wei zhong bing ji jiu yi xue. 2022;34:301–5.

    PubMed  Google Scholar 

  4. Zhang H, Liu Y, Fang X, Gu L, Luo C, Chen L, et al. Vitamin D(3) protects mice from diquat-induced oxidative stress through the NF-κB/Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2021;2021:6776956.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang X, Wang S, Wu Y, Liu X, Wang J, Han D. Ellagic acid alleviates diquat-induced jejunum oxidative stress in C57BL/6 mice through activating Nrf2 mediated signaling pathway. Nutrients. 2022;14:1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li X, Zhu J, Lin Q, Yu M, Lu J, Feng J, et al. Effects of curcumin on mitochondrial function, endoplasmic reticulum stress, and mitochondria-associated endoplasmic reticulum membranes in the jejunum of oxidative stress piglets. J Agric Food Chem. 2022;70:8974–85.

    Article  CAS  PubMed  Google Scholar 

  7. Carvalho G, Repolês BM, Mendes I, Wanrooij PH. Mitochondrial DNA instability in mammalian cells. Antioxid Rdox Signal. 2022;36:885–905.

    Article  CAS  Google Scholar 

  8. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85–100.

    Article  CAS  PubMed  Google Scholar 

  10. Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol. 2021;11:210168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Menger KE, Chapman J, Díaz-Maldonado H, Khazeem MM, Deen D, Erdinc D, et al. Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Res. 2022;50:11154–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448:501–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hubbard NW, Ames JM, Maurano M, Chu LH, Somfleth KY, Gokhale NS, et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature. 2022;607:769–75.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiao H, Wachsmuth L, Wolf S, Lohmann J, Nagata M, Kaya GG, et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature. 2022;607:776–83.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang T, Yin C, Fedorov A, Qiao L, Bao H, Beknazarov N, et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature. 2022;606:594–602.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lei Y, VanPortfliet JJ, Chen YF, Bryant JD, Li Y, Fails D, et al. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell. 2023;186:3013–32.e3022.

    Article  PubMed  Google Scholar 

  17. Enzan N, Matsushima S, Ikeda S, Okabe K, Ishikita A, Yamamoto T, et al. ZBP1 protects against mtDNA-induced myocardial inflammation in failing hearts. Circ Res. 2023;132:1110–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuriakose T, Kanneganti TD. ZBP1: innate sensor regulating cell death and inflammation. Trends Immunol. 2018;39:123–34.

    Article  CAS  PubMed  Google Scholar 

  19. Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature. 2020;580:391–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol. 2024;34:150–60.

  23. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li W, Liang L, Liu S, Yi H, Zhou Y. FSP1: a key regulator of ferroptosis. Trends Mol Med. 2023;29:753–64.

    Article  CAS  PubMed  Google Scholar 

  26. Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 2022;608:778–83.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin DY, Chen X, Liu Y, Williams CM, Pedersen LC, Stafford DW, et al. A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase. Nat Commun. 2023;14:828.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Gou S, Zhang Q, Yong X, Gan B, Jia D. FSP1 oxidizes NADPH to suppress ferroptosis. Cell Res. 2023;33:967–70.

    Article  CAS  PubMed  Google Scholar 

  29. Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, et al. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun. 2023;14:5933.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen W, Gullett JM, Tweedell RE, Kanneganti TD. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur J Immunol. 2023;53:e2250235.

    Article  PubMed  Google Scholar 

  31. Wang Y, Kanneganti TD. From pyroptosis, apoptosis and necroptosis to PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J. 2021;19:4641–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeng Z, You M, Fan C, Rong R, Li H, Xia X. Pathologically high intraocular pressure induces mitochondrial dysfunction through Drp1 and leads to retinal ganglion cell PANoptosis in glaucoma. Redox Biol. 2023;62:102687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, et al. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther. 2022;7:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Bin E, Yuan J, Huang M, Chen J, Tang N. Aberrant differentiation of epithelial progenitors is accompanied by a hypoxic microenvironment in the paraquat-injured human lung. Cell Discov. 2023;9:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Zhong CQ, Wu R, Xu X, Yang ZH, Cai S, et al. RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes. Protein cell. 2021;12:858–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szczesny B, Marcatti M, Ahmad A, Montalbano M, Brunyánszki A, Bibli SI, et al. Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci Rep. 2018;8:914.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Karki R, Kanneganti TD. PANoptosome signaling and therapeutic implications in infection: central role for ZBP1 to activate the inflammasome and PANoptosis. Curr Opin Immunol. 2023;83:102348.

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, et al. Phase separation of FSP1 promotes ferroptosis. Nature. 2023;619:371–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang D, Liang Y, Zhao S, Ding Y, Zhuang Q, Shi Q, et al. ZBP1 mediates interferon-induced necroptosis. Cell Mol Immunol. 2020;17:356–68.

    Article  CAS  PubMed  Google Scholar 

  41. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23:994–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maelfait J, Liverpool L, Bridgeman A, Ragan KB, Upton JW, Rehwinkel J. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 2017;36:2529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bryant JD, Lei Y, VanPortfliet JJ, Winters AD, West AP. Assessing mitochondrial DNA release into the cytosol and subsequent activation of innate immune-related pathways in mammalian cells. Curr Protoc. 2022;2:e372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, et al. A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol. 2015;26:2647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen H, Li Y, Wu J, Li G, Tao X, Lai K, et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 2020;27:2568–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Jiahuai Han (Xiamen University), Prof. Wei Mo (Xiamen University) and Ben Lu (Central South University), for experimental materials. Yanfang Xu was supported by Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare (2022QNRCYX-XYF), and Outstanding Young Talents Program of the First Affiliated Hospital of Fujian Medical University (YJCQN-A-XYF2021).

Funding

This work was supported by grants from National Natural Science Foundation of China (U23A20410), Young and Middle-aged Scientific Research Major Project of Fujian Provincial Health Commission (No. 2021ZQNZD004), Joint Funds for the innovation of science and Technology of Fujian province (2021Y9100), Program of the First Affiliated Hospital of Fujian Medical University (YJRC4104), and Fujian Province Finance Project (2020B009).

Author information

Authors and Affiliations

Authors

Contributions

YX, HM and JW designed research. KL, JW, SL, GL, KY, YY, YJ, JW, HM performed the mice and molecular experiments. ZC analyzed the single-cell RNA sequencing data. CQZ. conducted the MS data. HM and YX wrote the draft manuscript. YX HM and JW supervised the research and performed writing-review and editing. All authors verified the data and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jianfeng Wu, Huabin Ma or Yanfang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal experiments were accomplished in compliance with ethical standards. All animal experiments were approved by the Laboratory Animal Management and Ethics Committee of Fujian Medical University with approved number IACUC FJMU 2022-0886 and were performed in accordance with the “China Guide for the Protection and Use of Laboratory Animals”.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, K., Wang, J., Lin, S. et al. Sensing of mitochondrial DNA by ZBP1 promotes RIPK3-mediated necroptosis and ferroptosis in response to diquat poisoning. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01279-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01279-5

Search

Quick links