Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress

Abstract

Autophagy is an evolutionarily conserved catabolic process that is induced in response to various stress factors in order to protect cells and maintain cellular homeostasis by degrading redundant components and dysfunctional organelles. Dysregulation of autophagy has been implicated in several conditions such as cancer, neurodegenerative diseases, and metabolic disorders. Although autophagy has been commonly considered as a cytoplasmic process, accumulating evidence has revealed that epigenetic regulation within the nucleus is also important for regulation of autophagy. In particular, when energy homeostasis is disrupted, for instance due to nutrient deprivation, cells increase autophagic activity at the transcriptional level, thereby also increasing the extent of overall autophagic flux. The transcription of genes associated with autophagy is strictly regulated by epigenetic factors through a network of histone-modifying enzymes along with histone modifications. A better understanding of the complex regulatory mechanisms of autophagy could reveal potential new therapeutic targets for autophagy-related diseases. In this review, we discuss the epigenetic regulation of autophagy in response to nutrient stress, focusing on histone-modifying enzymes and histone modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Autophagy gene regulation via histone acetylation.
Fig. 2: Regulation of autophagy-associated genes via histone methylation.
Fig. 3: Chromatin remodeling in nutrient-deficient condition promotes cell survival by inducing autophagy.

Similar content being viewed by others

References

  1. Klionsky DJ, Emr SD. Cell biology - Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K. Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ. 2007;14:887–94.

    Article  CAS  PubMed  Google Scholar 

  4. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    Article  CAS  PubMed  Google Scholar 

  5. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9:1004–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 2015;22:367–76.

    Article  CAS  PubMed  Google Scholar 

  7. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62.

    Article  CAS  PubMed  Google Scholar 

  9. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol. 2011;192:615–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baek SH, Kim KI. Epigenetic control of autophagy: nuclear events gain more attention. Mol Cell. 2017;65:781–5.

    Article  CAS  PubMed  Google Scholar 

  12. Fullgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014;15:65–74.

    Article  PubMed  Google Scholar 

  13. Füllgrabe J, Ghislat G, Cho D-H, Rubinsztein DC. Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci. 2016;129:3059–66.

    Article  PubMed  Google Scholar 

  14. Di Malta C, Cinque L, Settembre C. Transcriptional regulation of autophagy: mechanisms and diseases. Front Cell Dev Biol. 2019;7:114.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy. 2015;11:867–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–U171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14:133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299–313.

    Article  CAS  PubMed  Google Scholar 

  22. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Napolitano G, Esposito A, Choi H, Matarese M, Benedetti V, Di Malta C, et al. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat Commun. 2018;9:3312.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  CAS  PubMed  Google Scholar 

  25. Bowman CJ, Ayer DE, Dynlacht BD. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol. 2014;16:1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389:251–60.

    Article  CAS  PubMed  Google Scholar 

  27. McGinty RK, Tan S. Nucleosome structure and function. Chem Rev. 2015;115:2255–73.

    Article  CAS  PubMed  Google Scholar 

  28. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14:R546–551.

    Article  CAS  PubMed  Google Scholar 

  29. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yun M, Wu J, Workman JL, Li B. Readers of histone modifications. Cell Res. 2011;21:564–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349–52.

    Article  CAS  PubMed  Google Scholar 

  32. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.

    Article  CAS  PubMed  Google Scholar 

  33. Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8:284–95.

    Article  CAS  PubMed  Google Scholar 

  34. Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26:5310–8.

    Article  CAS  PubMed  Google Scholar 

  35. Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27:2276–88.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Wu J, Liang G, Geng G, Zhao F, Yin P, et al. CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci Adv. 2020;6:eaax5819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Annunziata I, van de Vlekkert D, Wolf E, Finkelstein D, Neale G, Machado E, et al. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nat Commun. 2019;10:1–18.

    Article  CAS  Google Scholar 

  39. Yu YS, Shin HR, Kim D, Baek SA, Choi SA, Ahn H, et al. Pontin arginine methylation by CARM1 is crucial for epigenetic regulation of autophagy. Nat Commun. 2020;11:1–18.

    Article  CAS  Google Scholar 

  40. Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee JH, et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017;66:684–97.e689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fullgrabe J, Lynch-Day MA, Heldring N, Li W, Struijk RB, Ma Q, et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature. 2013;500:468–71.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bannister AJ, Schneider R, Kouzarides T. Histone methylation: dynamic or static? Cell. 2002;109:801–6.

    Article  CAS  PubMed  Google Scholar 

  43. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS Lett. 2011;585:2024–31.

    Article  PubMed  Google Scholar 

  45. Han D, Huang M, Wang T, Li Z, Chen Y, Liu C, et al. Lysine methylation of transcription factors in cancer. Cell Death Dis. 2019;10:290.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei FZ, Cao ZY, Wang X, Wang H, Cai MY, Li TT, et al. Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway. Autophagy. 2015;11:2309–22.

    Article  CAS  PubMed  Google Scholar 

  48. Li R, Yi X, Wei X, Huo B, Guo X, Cheng C, et al. EZH2 inhibits autophagic cell death of aortic vascular smooth muscle cells to affect aortic dissection. Cell Death Dis. 2018;9:180.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hsieh Y-Y, Lo H-L, Yang P-M. EZH2 inhibitors transcriptionally upregulate cytotoxic autophagy and cytoprotective unfolded protein response in human colorectal cancer cells. Am J Cancer Res. 2016;6:1661.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu DQ, Gao X, Morgan MA, Herz HM, Smith ER, Shilatifard A. The MLL3/MLL4 Branches of the COMPASS Family Function as Major Histone H3K4 Monomethylases at Enhancers. Mol Cell Biol. 2013;33:4745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park SW, Kim J, Oh S, Lee J, Cha J, Lee HS, et al. PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation. Nucleic Acids Res. 2022;50:7856–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8:35–46.

    Article  CAS  PubMed  Google Scholar 

  55. Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, Mann AO, Taoda Y, Gorman JA, et al. Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol. 2013;33:3983–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim J, Choi SA, Kim J, Kim H, Baek SH. Lysine-specific demethylase 3A is important for autophagic occurrence. Biochem Biophys Res Commun. 2020;526:176–83.

    Article  CAS  PubMed  Google Scholar 

  57. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell. 2009;137:459–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, et al. Monoubiquitination of human histone H2B: The factors involved and their roles in HOX gene regulation. Mol Cell. 2005;20:601–11.

    Article  CAS  PubMed  Google Scholar 

  59. Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell. 2012;46:662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen S, Jing YY, Kang X, Yang L, Wang DL, Zhang W, et al. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 2017;45:1144–58.

    CAS  PubMed  Google Scholar 

  61. Zheng J, Wang B, Zheng R, Zhang J, Huang C, Zheng R, et al. Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells. Cell Death Dis. 2020;11:758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science. 2010;329:1201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peeters JGC, Picavet LW, Coenen S, Mauthe M, Vervoort SJ, Mocholi E, et al. Transcriptional and epigenetic profiling of nutrient-deprived cells to identify novel regulators of autophagy. Autophagy. 2019;15:98–112.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figures in this review were created using BioRender.com. Creative Research Initiatives Program (Research Center for Epigenetic Code and Diseases) [2017R1A3B1023387 to SHB]; Science Research Center Program (Cellular Heterogeneity Research Center) [NRF-RS-2023-00207857 to KIK]; Basic Science Research Program [NRF-2021R1A2C1006680 to KIK]; Basic Science Research Program [NRF-2022R1A2C2010940 to HK]; Sejong Science Fellowship Program [NRF-2021R1C1C2010332 to YSY] from the National Research Foundation (NRF) grant funded by the Korea government.

Author information

Authors and Affiliations

Authors

Contributions

YSY, HK, KIK, and SHB wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hyunkyung Kim, Keun Il Kim or Sung Hee Baek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y.S., Kim, H., Kim, K.I. et al. Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress. Cell Death Differ 30, 1430–1436 (2023). https://doi.org/10.1038/s41418-023-01154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01154-9

This article is cited by

Search

Quick links