Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor stroma-derived ANGPTL2 potentiates immune checkpoint inhibitor efficacy

Abstract

Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic. We recently reported that tumor stroma-derived angiopoietin-like protein 2 (ANGPTL2) has tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses. However, a direct impact of ANGPTL2 on ICI anti-tumor effect remains unclear. Here, we use a murine syngeneic model to show that host ANGPTL2 facilitates CD8+ T cell cross-priming and contributes to anti-tumor responses to ICIs in this context. Importantly, our analysis of public datasets indicated that ANGPTL2 expression is associated with positive responses to ICI therapy by human melanoma patients. We conclude that ANGPTL2-mediated stromal cell crosstalk facilitates anti-tumor immunity and ICI responsiveness. These findings overall provide novel insight into ANGPTL2 anti-tumor function and regulation of ICI-induced anti-tumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Host ANGPTL2 deficiency attenuates ICI anti-tumor effect.
Fig. 2: Host ANGPTL2 deficiency decreases anti-tumor immune responses during ICI treatment.
Fig. 3: ICI anti-tumor effect in Angptl2−/− mice is rescued by dendritic cell vaccination.
Fig. 4: PDGFRα+ stromal cells in the tumor microenvironment express ANGPTL2 during ICI treatment.
Fig. 5: Correlation of ANGPTL2 expression with responses to ICI in human melanoma patients.
Fig. 6: Model proposing regulation of ICI anti-tumor effects by stromal ANGPTL2 signaling.

Similar content being viewed by others

Data availability

All data are available from the corresponding author on reasonable request.

References

  1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  6. Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat. Rev. 2015;41:868–76.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Huang D, Saw PE, Song E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol. 2022;43:523–45.

    Article  CAS  PubMed  Google Scholar 

  8. Oike Y, Yasunaga K, Ito Y, Matsumoto Sichiro, Maekawa H, Morisada T, et al. Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration. Proc Natl Acad Sci USA. 2003;100:9494–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc. Med. 2008;18:6–14.

    Article  CAS  PubMed  Google Scholar 

  10. Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab. 2014;25:245–54.

    Article  CAS  PubMed  Google Scholar 

  11. Horiguchi H, Kadomatsu T, Kurahashi R, Hara C, Miyata K, Baba M, et al. Dual functions of angiopoietin-like protein 2 signaling in tumor progression and anti-tumor immunity. Genes Dev. 2019;33:1641–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma P, Allison JP. The future of immune checkpoint therapy. Science (80-). 2015;348:56–61.

    Article  ADS  CAS  Google Scholar 

  13. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer. 2016;16:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  15. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Amon L, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25. https://doi.org/10.1038/s41591-019-0654-5.

  16. Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer. 2023. https://doi.org/10.1038/s41416-023-02361-4.

  17. Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat Med. 2018;24:1178–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bulgarelli J, Tazzari M, Granato AM, Ridolfi L, Maiocchi S, de Rosa F, et al. Dendritic cell vaccination in metastatic melanoma turns “non-T cell inflamed” into “T-cell inflamed” tumors. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.02353.

  19. Lövgren T, Wolodarski M, Wickström S, Edbäck U, Wallin M, Martell E, et al. Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. Oncoimmunology. 2020;9. https://doi.org/10.1080/2162402X.2020.1792058.

  20. Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11. https://doi.org/10.1186/s40164-022-00257-2.

  21. Yarchoan M, Albacker LA, Hopkins AC, Montesion M, Murugesan K, Vithayathil TT, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4. https://doi.org/10.1172/jci.insight.126908.

  22. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127. https://doi.org/10.1172/JCI91190.

  23. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362. https://doi.org/10.1126/science.aar3593.

  24. Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021;184. https://doi.org/10.1016/j.cell.2021.01.002.

  25. Horiguchi H, Kadomatsu T, Miyata K, Terada K, Sato M, Torigoe D, et al. Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis. Oncogene. 2021;40:55–67.

    Article  CAS  PubMed  Google Scholar 

  26. Kikuchi R, Tsuda H, Kozaki KI, Kanai Y, Kasamatsu T, Sengoku K, et al. Frequent inactivation of a putative tumor suppressor, angiopoietin-like protein 2, in ovarian cancer. Cancer Res. 2008;68:5067–75.

    Article  CAS  PubMed  Google Scholar 

  27. Aoi J, Endo M, Kadomatsu T, Miyata K, Nakano M, Horiguchi H, et al. Angiopoietin-like protein 2 is an important facilitator of inflammatory carcinogenesis and metastasis. Cancer Res. 2011;71:7502–12.

    Article  CAS  PubMed  Google Scholar 

  28. Endo M, Nakano M, Kadomatsu T, Fukuhara S, Kuroda H, Mikami S, et al. Tumor cell-derived angiopoietin-like protein ANGPTL2 is a critical driver of metastasis. Cancer Res. 2012;72:1784–94.

    Article  CAS  PubMed  Google Scholar 

  29. Horiguchi H, Endo M, Miyamoto Y, Sakamoto Y, Odagiri H, Masuda T, et al. Angiopoietin-like protein 2 renders colorectal cancer cells resistant to chemotherapy by activating spleen tyrosine kinase-phosphoinositide 3-kinase-dependent anti-apoptotic signaling. Cancer Sci. 2014;105:1550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Osumi H, Horiguchi H, Kadomatsu T, Tashiro K, Morinaga J, Takahashi T, et al. Tumor cell-derived angiopoietin-like protein 2 establishes a preference for glycolytic metabolism in lung cancer cells. Cancer Sci. 2020;111:1241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horiguchi H, Kadomatsu T, Yumoto S, Masuda T, Miyata K, Yamamura S, et al. Tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. Oncogene. 2022;41:4028–41.

    Article  CAS  PubMed  Google Scholar 

  32. Kadomatsu T, Hara C, Kurahashi R, Horiguchi H, Morinaga J, Miyata K, et al. ANGPTL2-mediated epigenetic repression of MHC-I in tumor cells accelerates tumor immune evasion. Mol Oncol. 2023. https://doi.org/10.1002/1878-0261.13490.

  33. Netsirisawan P, Chokchaichamnankit D, Srisomsap C, Svasti J, Champattanachai V. Proteomic analysis reveals aberrant o-glcnacylation of extracellular proteins from breast cancer cell secretion. Cancer Genomics Proteomics. 2015;12:201–9.

    CAS  PubMed  Google Scholar 

  34. Ho WL, Hsu WM, Huang MC, Kadomatsu K, Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J. Hematol. Oncol. 2016;9:1–15.

    Article  CAS  Google Scholar 

  35. Peixoto A, Relvas-Santos M, Azevedo R, Lara Santos L, Ferreira JA. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.00380.

  36. Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: a promising target for biomarkers and therapeutics. Biochim Biophys Acta—Rev Cancer. 2021;1875. https://doi.org/10.1016/j.bbcan.2020.188464.

  37. Kim I, Moon SO, Koh KN, Kim H, Uhm CS, Kwak HJ, et al. Molecular cloning, expression, and characterization of angiopoietin- related protein. Angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem. 1999;274:26523–8.

    Article  CAS  PubMed  Google Scholar 

  38. Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M, et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 2009;10:178–88.

    Article  CAS  PubMed  Google Scholar 

  39. Horiguchi H, Endo M, Kawane K, Kadomatsu T, Terada K, Morinaga J, et al. ANGPTL2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis. EMBO J. 2017;36:409–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motokawa I, Endo M, Terada K, Horiguchi H, Miyata K, Kadomatsu T, et al. Interstitial pneumonia induced by bleomycin treatment is exacerbated in Angptl2-deficient mice. Am J Physiol—Lung Cell Mol Physiol. 2016;311:L704–L713.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kiyoka Tabu, Noriko Shirai, and Sayomi Iwaki for technical assistance. This work was supported by the Scientific Research Fund of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (grant 23K06638 to HH, grant 21K07101 to TK), the Takeda Science Foundation (HH), a Tasaki Memorial Research Grant for 2022 (HH), a grant from the Center for Metabolic Regulation of Healthy Aging (CMHA) (HH), and the Kato Memorial Bioscience Foundation (TK).

Author information

Authors and Affiliations

Authors

Contributions

HH designed the study, performed and analyzed experiments, and wrote the paper. TK designed and supervised the study. TY, SY, TH, and MS performed and analyzed experiments. KT provided recombinant ANGPTL2 protein. KM provided Angptl2 mutant mice. YI, TK, and SF collected human samples. TM supervised the study. YO coordinated, designed, and supervised the study and wrote the paper. All authors discussed the data and commented on the paper.

Corresponding authors

Correspondence to Haruki Horiguchi or Yuichi Oike.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horiguchi, H., Kadomatsu, T., Yamashita, T. et al. Tumor stroma-derived ANGPTL2 potentiates immune checkpoint inhibitor efficacy. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00757-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00757-9

Search

Quick links