Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adeno-associated virus-mediated trastuzumab delivery to the central nervous system for human epidermal growth factor receptor 2+ brain metastasis

Abstract

Trastuzumab improves overall survival for HER2+ breast cancer, but its short half-life in the cerebrospinal fluid (~2–4 days) and delivery limitations restrict the ability to target HER2+ central nervous system (CNS) disease. We developed an adeno-associated virus (AAV) vector expressing a codon-optimized, ubiquitin C (UbC)-promoter-driven trastuzumab sequence (AAV9.UbC.trastuzumab) for intrathecal administration. Transgene expression was evaluated in adult Rag1 knockout mice and rhesus nonhuman primates (NHPs) after a single intracerebroventricular (ICV) or intra-cisterna magna (ICM) AAV9.UbC.trastuzumab injection, respectively, using real-time PCR, ELISA, Western blot, in situ hybridization, single-nucleus RNA sequencing, and liquid chromatography-mass spectrometry; antitumor efficacy was evaluated in brain xenografts using HER2+ breast cancer cell lines (BT-474, MDA-MB-453). Transgene expression was detected in brain homogenates of Rag1 knockout mice following a single ICV injection of AAV9.UbC.trastuzumab (1 × 1011 vector genome copies [GC]/mouse) and tumor progression was inhibited in xenograft models of breast-to-brain metastasis. In NHPs, ICM delivery of AAV9.UbC.trastuzumab (3 × 1013 GC/animal) was well tolerated (36–37 days in-life) and resulted in transgene expression in CNS tissues and cerebrospinal fluid at levels sufficient to induce complete tumor remission in MDA-MB-453 brain xenografts. With AAV9’s proven clinical safety record, this gene therapy may represent a viable approach for targeting HER2 + CNS malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single ICV administration of AAV9 vector encoding a codon-optimized version of trastuzumab results in robust transgene expression in RAG1 KO mice.
Fig. 2: AAV9.UbC.trastuzumab-mediated trastuzumab expression is not affected by systemic pre-treatment with IVIg containing broad neutralizing antibodies against AAV9.
Fig. 3: Single-dose ICV administration of AAV9.UbC.trastuzumab leads to tumor regression in xenograft mouse models of HER2+ breast-to-brain metastases.
Fig. 4: Detection of trastuzumab in the CSF of female NHPs following ICM administration of AAV9 vectors encoding trastuzumab.
Fig. 5: CNS-wide gene delivery and transgene transcription following ICM treatment with 3 × 1013 GC/animal of AAV9.UbC.trastuzumab.
Fig. 6: ICM delivery of 3 × 1013 GC/animal AAV9.UbC.trastuzumab results in transgene protein expression in NHP CNS tissues at levels sufficient to induce complete anti-tumor responses in tumor-bearing mice.

Similar content being viewed by others

Data availability

All data discussed in the manuscript are available in the main text or supplementary materials. Sequencing data associated with the snRNA-seq experiments were uploaded to the NCBI Gene Expression Omnibus with accession number GSE255027.

References

  1. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–75.

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Cancer Society: Survival Rates for Breast Cancer: American Cancer Society; [updated March 1, 2022. Available from https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-rates.html.

  3. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl J Med. 2011;365:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. DeBusk K, Ike C, Lindegger N, Schwartz N, Surinach A, Liu Y, et al. Real-world outcomes among patients with HER2+ metastatic breast cancer with brain metastases. J Manag Care Spec Pharm. 2022;28:657–66.

    PubMed  Google Scholar 

  7. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22:2865–72.

    Article  PubMed  Google Scholar 

  8. Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv. 2016;13:963–75.

    Article  CAS  PubMed  Google Scholar 

  9. Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs. 2007;18:23–8.

    Article  CAS  PubMed  Google Scholar 

  10. Mills MN, King W, Soyano A, Pina Y, Czerniecki BJ, Forsyth PA, et al. Evolving management of HER2+ breast cancer brain metastases and leptomeningeal disease. J Neurooncol. 2022;157:249–69.

    Article  PubMed  Google Scholar 

  11. Bousquet G, Darrouzain F, de Bazelaire C, Ternant D, Barranger E, Winterman S, et al. Intrathecal trastuzumab halts progression of CNS metastases in breast cancer. J Clin Oncol. 2016;34:e151–5.

    Article  PubMed  Google Scholar 

  12. Bonneau C, Paintaud G, Tredan O, Dubot C, Desvignes C, Dieras V, et al. Phase I feasibility study for intrathecal administration of trastuzumab in patients with HER2 positive breast carcinomatous meningitis. Eur J Cancer. 2018;95:75–84.

    Article  CAS  PubMed  Google Scholar 

  13. Delhaas EM, Huygen F. Complications associated with intrathecal drug delivery systems. BJA Educ. 2020;20:51–7.

    Article  CAS  PubMed  Google Scholar 

  14. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hinderer C, Katz N, Dyer C, Goode T, Johansson J, Bell P, et al. Translational feasibility of lumbar puncture for intrathecal AAV administration. Mol Ther Methods Clin Dev. 2020;17:969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hordeaux J, Hinderer C, Goode T, Katz N, Buza EL, Bell P, et al. Toxicology study of intra-cisterna magna adeno-associated virus 9 expressing human alpha-L-iduronidase in Rhesus Macaques. Mol Ther Methods Clin Dev. 2018;10:79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hordeaux J, Jeffrey BA, Jian J, Choudhury GR, Michalson K, Mitchell TW, et al. Efficacy and safety of a krabbe disease gene therapy. Hum Gene Ther. 2022;33:499–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang L, Jin S, Wang J, Lv Z, Xin C, Tan C, et al. AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release. 2023;355:458–73.

    Article  CAS  PubMed  Google Scholar 

  19. Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6:601–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. George LA, Monahan PE, Eyster ME, Sullivan SK, Ragni MV, Croteau SE, et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N. Engl J Med. 2021;385:1961–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuzmin DA, Shutova MV, Johnston NR, Smith OP, Fedorin VV, Kukushkin YS, et al. The clinical landscape for AAV gene therapies. Nat Rev Drug Discov. 2021;20:173–4.

    Article  CAS  PubMed  Google Scholar 

  22. Rothwell WT, Bell P, Richman LK, Limberis MP, Tretiakova AP, Li M, et al. Intrathecal viral vector delivery of trastuzumab prevents or inhibits tumor growth of human HER2-Positive Xenografts in Mice. Cancer Res. 2018;78:6171–82.

    Article  CAS  PubMed  Google Scholar 

  23. Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, et al. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther. 2010;21:1259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katz N, Goode T, Hinderer C, Hordeaux J, Wilson JM. Standardized method for intra-cisterna magna delivery under fluoroscopic guidance in nonhuman primates. Hum Gene Ther Methods. 2018;29:212–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lal S, Lacroix M, Tofilon P, Fuller GN, Sawaya R, Lang FF. An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg. 2000;92:326–33.

    Article  CAS  PubMed  Google Scholar 

  26. Donoghue JF, Bogler O, Johns TG. A simple guide screw method for intracranial xenograft studies in mice. J Vis Exp. 2011;55:3157.

  27. Maple L, Lathrop R, Bozich S, Harman W, Tacey R, Kelley M, et al. Development and validation of ELISA for herceptin detection in human serum. J Immunol Methods. 2004;295:169–82.

    Article  CAS  PubMed  Google Scholar 

  28. Bouwer NI, Steenbruggen TG, van Rosmalen J, Rier HN, Kitzen J, van Bekkum ML, et al. Cardiotoxicity during long-term trastuzumab use in patients with HER2-positive metastatic breast cancer: who needs cardiac monitoring? Breast Cancer Res Treat. 2021;186:851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21:704–12.

    Article  CAS  PubMed  Google Scholar 

  30. Horiuchi M, Hinderer CJ, Greig JA, Dyer C, Buza EL, Bell P, et al. Intravenous immunoglobulin prevents peripheral liver transduction of intrathecally delivered AAV vectors. Mol Ther Methods Clin Dev. 2022;27:272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther. 2020;28:723–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary animal models for human gene therapy applications. Curr Gene Ther. 2015;15:531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hinderer C, Bell P, Vite CH, Louboutin JP, Grant R, Bote E, et al. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna. Mol Ther Methods Clin Dev. 2014;1:14051.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kyeong S, Cha YJ, Ahn SG, Suh SH, Son EJ, Ahn SJ. Subtypes of breast cancer show different spatial distributions of brain metastases. PLoS One. 2017;12:e0188542.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pestalozzi BC, Zahrieh D, Price KN, Holmberg SB, Lindtner J, Collins J, et al. Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol. 2006;17:935–44.

    Article  CAS  PubMed  Google Scholar 

  36. Scott BJ, Kesari S. Leptomeningeal metastases in breast cancer. Am J Cancer Res. 2013;3:117–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Griguolo G, Jacot W, Kantelhardt E, Dieci MV, Bourgier C, Thomssen C, et al. External validation of Modified Breast Graded Prognostic Assessment for breast cancer patients with brain metastases: A multicentric European experience. Breast. 2018;37:36–41.

    Article  PubMed  Google Scholar 

  38. Lu NT, Raizer J, Gabor EP, Liu NM, Vu JQ, Slamon DJ, et al. Intrathecal trastuzumab: immunotherapy improves the prognosis of leptomeningeal metastases in HER-2+ breast cancer patient. J Immunother Cancer. 2015;3:41.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Figura NB, Rizk VT, Mohammadi H, Evernden B, Mokhtari S, Yu HM, et al. Clinical outcomes of breast leptomeningeal disease treated with intrathecal trastuzumab, intrathecal chemotherapy, or whole brain radiation therapy. Breast Cancer Res Treat. 2019;175:781–8.

    Article  CAS  PubMed  Google Scholar 

  40. Wolak DJ, Pizzo ME, Thorne RG. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging. J Control Release. 2015;197:78–86.

    Article  CAS  PubMed  Google Scholar 

  41. Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88:1277–340.

    Article  CAS  PubMed  Google Scholar 

  42. Braen AP, Perron J, Tellier P, Catala AR, Kolaitis G, Geng W. A 4-week intrathecal toxicity and pharmacokinetic study with trastuzumab in cynomolgus monkeys. Int J Toxicol. 2010;29:259–67.

    Article  CAS  PubMed  Google Scholar 

  43. Crowley AR, Ackerman ME. Mind the gap: how interspecies variability in IgG and its receptors may complicate comparisons of human and non-human primate effector function. Front Immunol. 2019;10:697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hinderer C, Bell P, Katz N, Vite CH, Louboutin JP, Bote E, et al. Evaluation of intrathecal routes of administration for adeno-associated viral vectors in large animals. Hum Gene Ther. 2018;29:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hinderer C, Miller R, Dyer C, Johansson J, Bell P, Buza E, et al. Adeno-associated virus serotype 1-based gene therapy for FTD caused by GRN mutations. Ann Clin Transl Neurol. 2020;7:1843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78:6381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002;99:11854–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5:285–97.

    Article  CAS  PubMed  Google Scholar 

  49. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl J Med. 2017;377:1713–22.

    Article  CAS  PubMed  Google Scholar 

  50. Ponde NF, Lambertini M, de Azambuja E. Twenty years of anti-HER2 therapy-associated cardiotoxicity. ESMO Open. 2016;1:e000073.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet. 2017;389:1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Celensia Tolson for her assistance with the biodistribution studies, and Rucha Fadnavis for her assistance with single-nucleus RNA sequencing. We thank the Immunology Core, Histopathology Core, Nucleic Acid Technologies Core, Program for Comparative Medicine, and Vector Core of the Gene Therapy Program at the University of Pennsylvania for study support. All vectors were produced by the Penn Vector Core (RRID: SCR_022432).

Funding

This study was supported by G2 Oncology.

Author information

Authors and Affiliations

Authors

Contributions

MSW—conceptualization, data curation, formal analysis, investigation, methodology, project administration, software, supervision, validation, visualization, writing-original draft preparation, writing-review and editing. SA—data curation, formal analysis, investigation, methodology, software, validation, visualization, writing-original draft preparation, writing-review and editing. ARM—data curation, investigation, methodology, validation, visualization, writing-original draft preparation. JR—data curation, formal analysis, investigation, methodology, software. NJP—data curation, investigation, methodology. KO—formal analysis. RJL—data curation, formal analysis, software, visualization. JAG—conceptualization, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, writing-review and editing. JMW—conceptualization, funding acquisition, resources, supervision, writing-review and editing.

Corresponding author

Correspondence to James M. Wilson.

Ethics declarations

Competing interests

JMW is a paid advisor to and holds equity in iECURE, Scout Bio, Passage Bio, and the Center for Breakthrough Medicines (CBM). He also holds equity in the former G2 Bio asset companies. He has sponsored research agreements with Amicus Therapeutics, CBM, Elaaj Bio, FA212, Foundation for Angelman Syndrome Therapeutics, former G2 Bio asset companies, iECURE, Passage Bio, and Scout Bio, which are licensees of Penn technology. JAG and JMW are inventors on patents that have been licensed to various biopharmaceutical companies and for which they may receive payments. The other authors have no disclosures to declare.

Ethical approval

All animal procedures were approved by the Institutional Animal Care and Use Committee of the University of Pennsylvania.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, M.S., Aras, S., Morgan, A.R. et al. Adeno-associated virus-mediated trastuzumab delivery to the central nervous system for human epidermal growth factor receptor 2+ brain metastasis. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00751-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00751-1

Search

Quick links