Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell atlas reveals the immunosuppressive microenvironment and Treg cells landscapes in recurrent Glioblastoma

Subjects

Abstract

Patients diagnosed with glioblastoma (GBM) have the most aggressive tumor progression and lethal recurrence. Research on the immune microenvironment landscape of tumor and cerebrospinal fluid (CSF) is limited. At the single-cell level, we aim to reveal the recurrent immune microenvironment of GBM and the potential CSF biomarkers and compare tumor locations. We collected four clinical samples from two patients: malignant samples from one recurrent GBM patient and non-malignant samples from a patient with brain tumor. We performed single-cell RNA sequencing (scRNA-seq) to reveal the immune landscape of recurrent GBM and CSF. T cells were enriched in the malignant tumors, while Treg cells were predominately found in malignant CSF, which indicated an inhibitory microenvironment in recurrent GBM. Moreover, macrophages and neutrophils were significantly enriched in malignant CSF. This indicates that they an important role in GBM progression. S100A9, extensively expressed in malignant CSF, is a promising biomarker for GBM diagnosis and recurrence. Our study reveals GBM’s recurrent immune microenvironment after chemoradiotherapy and compares malignant and non-malignant CSF samples. We provide novel targets and confirm the promise of liquid CSF biopsy for patients with GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The landscape of recurrent malignant tumor samples and cerebrospinal fluid based on scRNA-seq.
Fig. 2: The transcriptional characteristics and differences between malignant samples.
Fig. 3: Survival and functional analysis based on S100A9 expression.
Fig. 4: Characterization of macrophage and T cells diversity in malignant microenvironment of GBM patients.
Fig. 5: Differences in immune microenvironment between malignant and non-malignant circumstance.
Fig. 6: Treg cells analyses in two CSF samples.

Similar content being viewed by others

Data availability

The expressional and survival validation data of S100A9 were downloaded from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) database. The scRNA-seq datasets generated during and analyzed during the current study have been uploaded in SRA with ID: PRJNA970244 and are available from Hengzhu Zhang and Yizhi Ge on reasonable request.

References

  1. Xiao Y, Wang Z, Zhao M, Deng Y, Yang M, Su G, et al. Single-cell transcriptomics revealed subtype-specific tumor immune microenvironments in human glioblastomas. Front Immunol. 2022;13:914236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sareen H, Garrett C, Lynch D, Powter B, Brungs D, Cooper A, et al. The role of liquid biopsies in detecting molecular tumor biomarkers in brain cancer patients. Cancers. 2020;12:1831.

  3. Yeo AT, Rawal S, Delcuze B, Christofides A, Atayde A, Strauss L, et al. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nat Immunol. 2022;23:971–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, et al. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell. 2018;175:1665–78.e18.

    Article  CAS  PubMed  Google Scholar 

  5. Abdelfattah N, Kumar P, Wang C, Leu JS, Flynn WF, Gao R, et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat Commun. 2022;13:767.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Z, Hambardzumyan D. Immune microenvironment in glioblastoma subtypes. Front Immunol. 2018;9:1004.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Watermann C, Pasternack H, Idel C, Ribbat-Idel J, Brägelmann J, Kuppler P, et al. Recurrent HNSCC harbor an immunosuppressive tumor immune microenvironment suggesting successful tumor immune evasion. Clin Cancer Res. 2021;27:632–44.

    Article  CAS  PubMed  Google Scholar 

  8. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 2006;66:3294–302.

    Article  CAS  PubMed  Google Scholar 

  9. Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol. 2001;167:1137–40.

    Article  CAS  PubMed  Google Scholar 

  10. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, et al. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol. 2011;186:4388–95.

    Article  CAS  PubMed  Google Scholar 

  12. Ronvaux L, Riva M, Coosemans A, Herzog M, Rommelaere G, Donis N, et al. Liquid biopsy in glioblastoma. Cancers. 2022;14:3394.

  13. Jung M, Klotzek S, Lewandowski M, Fleischhacker M, Jung K. Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem. 2003;49:1028–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20:184–91.

    Article  CAS  PubMed  Google Scholar 

  15. Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565:654–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mikolajewicz N, Khan S, Trifoi M, Skakdoub A, Ignatchenko V, Mansouri S, et al. Leveraging the CSF proteome toward minimally-invasive diagnostics surveillance of brain malignancies. Neuro-Oncol Adv. 2022;4:vdac161.

    Article  Google Scholar 

  17. Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics. 2013;14:632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14:979–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171:1611–1624.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134–53.

    Article  CAS  PubMed  Google Scholar 

  21. Ma R, Kang X, Zhang G, Fang F, Du Y, Lv H. High expression of UBE2C is associated with the aggressive progression and poor outcome of malignant glioma. Oncol Lett. 2016;11:2300–4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hyman G, Manglik V, Rousch JM, Verma M, Kinkebiel D, Banerjee HN. Epigenetic approaches in glioblastoma multiforme and their implication in screening and diagnosis. Methods Mol Biol. 2015;1238:511–21.

    Article  PubMed  Google Scholar 

  23. Zhou J, Guo H, Liu L, Hao S, Guo Z, Zhang F, et al. Construction of co-expression modules related to survival by WGCNA and identification of potential prognostic biomarkers in glioblastoma. J Cell Mol Med. 2021;25:1633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia S, Lal B, Tung B, Wang S, Goodwin CR, Laterra J. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol. 2016;18:507–17.

    Article  CAS  PubMed  Google Scholar 

  25. Monteiro C, Miarka L, Perea-García M, Priego N, García-Gómez P, Álvaro-Espinosa L, et al. Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism. Nat Med. 2022;28:752–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Biswas AK, Han S, Tai Y, Ma W, Coker C, Quinn SA, et al. Targeting S100A9-ALDH1A1-retinoic acid signaling to suppress brain relapse in EGFR-mutant lung cancer. Cancer Discov. 2022;12:1002–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in cancer. Biochim Biophysica Acta Rev Cancer. 2023;1878:188891.

    Article  CAS  Google Scholar 

  28. Wang H, Mao X, Ye L, Cheng H, Dai X. The role of the S100 protein family in glioma. J Cancer. 2022;13:3022–30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao MJ, Lu T, Ma C, Wang ZF, Li ZQ. A narrative review on the management of glioblastoma in China. Chin Clin Oncol. 2022;11:29.

    Article  CAS  PubMed  Google Scholar 

  30. Wen PY, Chang SM, Lamborn KR, Kuhn JG, Norden AD, Cloughesy TF, et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro Oncol. 2014;16:567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6:1003–10.

    Article  PubMed  Google Scholar 

  32. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:eaaa0984.

  33. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110:4009–14.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178:835–849.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen S, Xie Y, Cai Y, Hu H, He M, Liu L, et al. Multiomic analysis reveals comprehensive tumor heterogeneity and distinct immune subtypes in multifocal intrahepatic cholangiocarcinoma. Clin Cancer Res. 2022;28:1896–910.

    Article  CAS  PubMed  Google Scholar 

  37. Yekula A, Tracz J, Rincon-Torroella J, Azad T, Bettegowda C. Single-cell RNA sequencing of cerebrospinal fluid as an advanced form of liquid biopsy for neurological disorders. Brain Sci. 2022;12:812.

  38. Wu L, Wu W, Zhang J, Zhao Z, Li L, Zhu M, et al. Natural coevolution of tumor and immunoenvironment in glioblastoma. Cancer Discov. 2022;12:2820–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim J, Lee IH, Cho HJ, Park CK, Jung YS, Kim Y, et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell. 2015;28:318–28.

    Article  CAS  PubMed  Google Scholar 

  40. Valiente M, Sepúlveda JM, Pérez A. Emerging targets for cancer treatment: S100A9/RAGE. ESMO Open. 2023;8:100751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai Q, Zhu J, Cui X, Xia Y, Gao H, Wang X, et al. S100A9 promotes inflammatory response in diabetic nonalcoholic fatty liver disease. Biochem Biophys Res Commun. 2022;618:127–32.

    Article  CAS  PubMed  Google Scholar 

  42. Fang S, Cheng X, Shen T, Dong J, Li Y, Li Z, et al. CXCL8 up-regulated LSECtin through AKT signal and correlates with the immune microenvironment modulation in colon cancer. Cancers. 2022;14:5300.

  43. Ribeiro-Dias F, Oliveira IBN. A critical overview of interleukin 32 in Leishmaniases. Front Immunol. 2022;13:849340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pereira AC, De Pascale J, Resende R, Cardoso S, Ferreira I, Neves BM, et al. ER-mitochondria communication is involved in NLRP3 inflammasome activation under stress conditions in the innate immune system. Cell Mol Life Sci. 2022;79:213.

    Article  CAS  PubMed  Google Scholar 

  45. Fanelli GN, Grassini D, Ortenzi V, Pasqualetti F, Montemurro N, Perrini P, et al. Decipher the glioblastoma microenvironment: the first milestone for new groundbreaking therapeutic strategies. Genes. 2021;12:445.

  46. Jacobs JFM, Idema AJ, Bol KF, Grotenhuis JA, de Vries IJM, Wesseling P, et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol. 2010;225:195–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply acknowledged the great assistant from OE Biotech Co., Ltd. (Shanghai, China) and their technicist XiaoHua Yao. We also thank the data upload service from NCBI SRA Submissions.

Funding

This study was supported by the Postdoctoral Fund of the People’s Government of Jiangsu Province (200730000107) and the Postdoctoral Fund of Jiangsu Cancer Hospital (SZL202013).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Xingdong Wang, Yizhi Ge, and Yuting Hou were involved in the conceptualization, design, writing, and methodology of this study. Xiaodong Wang, Zhengcun Yan, and Yuping Li polish language. Lun Dong, Lei She, and Can Tang participated in the patients’ selection. Hengzhu Zhang and Min Wei performed conceptualization, design, data analysis, and critically revised the manuscript. All authors have read and approved the final version of the manuscript and consent to its publication.

Corresponding authors

Correspondence to Min Wei or Hengzhu Zhang.

Ethics declarations

Ethics approval

Approval of the research protocol by an Institutional Reviewer Board: Subei People Hospital Institutional Review Board. Informed Consent: Informed consent was obtained from all patients. Registry and the Registration No. of the study/trial: N/A. Animal Studies: write N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ge, Y., Hou, Y. et al. Single-cell atlas reveals the immunosuppressive microenvironment and Treg cells landscapes in recurrent Glioblastoma. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00740-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00740-4

Search

Quick links