Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting GNAQ/11 through PKC inhibition in uveal melanoma

Abstract

Uveal melanoma is a rare malignancy affecting 5.1 patients/million per year with definitive treatment options of enucleation or radiation therapy to the primary tumor. Unfortunately, no FDA-approved systemic therapies exist for patients in the adjuvant or metastatic setting. Molecular profiling over the past decade has helped define uveal melanomas by characteristic mutations: GNAQ, GNA11, BAP1, SF3B1, and EIF1AX mutations. GNAQ/11 mutations are present in over 90% of patients with uveal melanoma and lead to signal transduction through G-protein coupled receptors to downstream growth factors. PKC inhibition has been an active area of investigation targeting this pathway specific to uveal melanoma. Several molecules have been developed and evaluated in clinical trials. Responses have been noted but clinical development has also yielded multiple toxicities and pathways of resistance limiting both breadth and durability of responses leading to combination therapy approaches. PKC inhibition remains an active and encouraging area of research to determine effective therapies for patients with uveal melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Uveal melanoma tumor-initiating mutations.
Fig. 2: GNAQ/11 pathway activation.

Similar content being viewed by others

References

  1. Kaliki S, Shields CL. Uveal melanoma: Relatively rare but deadly cancer. Eye. 2017;31:241–57.

    Article  CAS  Google Scholar 

  2. Kujala E, Makitie T, Kivela T. Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2003;44:4651–9.

    Article  Google Scholar 

  3. Pelster MS, Gruschkus SK, Bassett R, Gombos DS, Shephard M, Posada L, et al. Nivolumab and ipilimumab in metastatic uveal melanoma: Results from a single-arm phase II study. J Clin Oncol. 2021;39:599–607.

    Article  CAS  Google Scholar 

  4. Bedikian AY, Papadopoulos N, Plager C, Eton O, Ring S. Phase II evaluation of temozolomide in metastatic choroidal melanoma. Melanoma Res. 2003;13:303–6.

    Article  CAS  Google Scholar 

  5. Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM, et al. Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: A phase III, multicenter, randomized trial (SUMIT). J Clin Oncol: Off J Am Soc Clin Oncol. 2018;36:1232–9.

    Article  CAS  Google Scholar 

  6. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature 2013;500:415–21.

    Article  CAS  Google Scholar 

  7. Arora S, Velichinskii R, Lesh RW, Ali U, Kubiak M, Bansal P, et al. Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv Ther 2019;36:2638–78.

    Article  Google Scholar 

  8. Zimmer L, Vaubel J, Mohr P, Hauschild A, Utikal J, Simon J, et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naive patients with metastatic uveal melanoma. PLoS One. 2015;10:e0118564.

    Article  Google Scholar 

  9. Joshua AM, Monzon JG, Mihalcioiu C, Hogg D, Smylie M, Cheng T. A phase 2 study of tremelimumab in patients with advanced uveal melanoma. Melanoma Res. 2015;25:342–7.

    Article  CAS  Google Scholar 

  10. Algazi AP, Tsai KK, Shoushtari AN, Munhoz RR, Eroglu Z, Piulats JM, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer 2016;122:3344–53.

    Article  CAS  Google Scholar 

  11. Heppt MV, Amaral T, Kahler KC, Heinzerling L, Hassel JC, Meissner M, et al. Combined immune checkpoint blockade for metastatic uveal melanoma: A retrospective, multi-center study. J Immunother Cancer. 2019;7:299.

    Article  Google Scholar 

  12. Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med. 2021;385:1196–206.

    Article  CAS  Google Scholar 

  13. Damato BE, Dukes J, Goodall H, Carvajal RD. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma. Cancers. 2019;11:971.

    Article  CAS  Google Scholar 

  14. Shields CL, Dalvin LA, Vichitvejpaisal P, Mazloumi M, Ganguly A, Shields JA. Prognostication of uveal melanoma is simple and highly predictive using The Cancer Genome Atlas (TCGA) classification: A review. Indian J Ophthalmol. 2019;67:1959–63.

    Article  Google Scholar 

  15. Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32:204–20. e15

    Article  CAS  Google Scholar 

  16. Harbour JW, Onken MD, Roberson EDO, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  CAS  Google Scholar 

  17. Field MG, Harbour JW. Recent developments in prognostic and predictive testing in uveal melanoma. Curr Opin Ophthalmol. 2014;25:234–9.

    Article  Google Scholar 

  18. Bakhoum MF, Esmaeli B. Molecular characteristics of uveal melanoma: Insights from the Cancer Genome Atlas (TCGA) Project. Cancers. 2019;11:1061.

    Article  Google Scholar 

  19. Ma J, Weng L, Bastian BC, Chen X. Functional characterization of uveal melanoma oncogenes. Oncogene 2021;40:806–20.

    Article  CAS  Google Scholar 

  20. Breitkreutz D, Braiman-Wiksman L, Daum N, Denning MF, Tennenbaum T. Protein kinase C family: On the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol. 2007;133:793–808.

    Article  CAS  Google Scholar 

  21. Wu X, Li J, Zhu M, Fletcher JA, Hodi FS. Protein kinase C inhibitor AEB071 targets ocular melanoma harboring GNAQ mutations via effects on the PKC/Erk1/2 and PKC/NF-kappaB pathways. Mol Cancer Ther. 2012;11:1905–14.

    Article  CAS  Google Scholar 

  22. Piperno-Neumann S, Larkin J, Carvajal RD, Luke JJ, Schwartz GK, Hodi FS, et al. Genomic profiling of metastatic uveal melanoma and clinical results of a phase I study of the protein kinase C inhibitor AEB071. Mol Cancer Ther. 2020;19:1031–9.

    Article  CAS  Google Scholar 

  23. Musi E, Ambrosini G, de Stanchina E, Schwartz GK. The phosphoinositide 3-kinase alpha selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells. Mol Cancer Ther. 2014;13:1044–53.

    Article  CAS  Google Scholar 

  24. Wu X, Zhu M, Fletcher JA, Giobbie-Hurder A, Hodi FS. The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma. PLoS One. 2012;7:e29622.

    Article  CAS  Google Scholar 

  25. Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, et al. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene. 2014;33:4724–34.

    Article  CAS  Google Scholar 

  26. Sagoo MS, Harbour JW, Stebbing J, Bowcock AM. Combined PKC and MEK inhibition for treating metastatic uveal melanoma. Oncogene. 2014;33:4722–3.

    Article  CAS  Google Scholar 

  27. Croce M, Ferrini S, Pfeffer U, Gangemi R. Targeted therapy of uveal melanoma: Recent failures and new perspectives. Cancers. 2019;11:846.

    Article  Google Scholar 

  28. Li Y, Shi J, Yang J, Ge S, Zhang J, Jia R, et al. Uveal melanoma: Progress in molecular biology and therapeutics. Ther Adv Med Oncol. 2020;12:1758835920965852.

    Article  CAS  Google Scholar 

  29. SMR Congress 2017 abstracts. Pigment Cell & Melanoma Research. 2018;31:125-230.

  30. Kapiteijn E, Carlino M, Boni V, Loirat D, Speetjens F, Park J, et al. Abstract CT068: A Phase I trial of LXS196, a novel PKC inhibitor for metastatic uveal melanoma. Cancer Research. 2019;79(13 Supplement):CT068.

  31. IDEAYA Biosciences. Darovasertib (IDE196) Investor Day April 2021. [PDF] https://filecache.investorroom.com/mr5ir_ideayabio/154/20210416_IDE196%20Investor%20Day_vFF.pdf.

  32. Frey CR, Wagle M-C, Vaidya K, Hambleton J, Lackner M, Mounir Z. Abstract 5337: Analysis of drug combinations with the PKC inhibitor IDE196 support dual MEK and PKC inhibition as a rational combination in metastatic uveal melanoma. Cancer Research. 2020;80(16 Supplement):5337-.

  33. Wagle M-C, Ravindran N, Pankajakshan D, Lackner M, Mounir Z. Abstract 1343: Preclinical evaluation of a PKC and MET inhibitor combination in metastatic uveal melanoma. Cancer Research. 2021;81(13 Supplement):1343-.

  34. Cheng H, Chua V, Liao C, Purwin TJ, Terai M, Kageyama K, et al. Co-targeting HGF/cMET signaling with MEK inhibitors in metastatic uveal melanoma. Mol Cancer Ther. 2017;16:516–28.

    Article  CAS  Google Scholar 

  35. IDEAYA Biosciences. Darovasertib (IDE196) Investor Day August 2021. [PDF] https://ir.ideayabio.com/image/20210416_IDE196+Investor+Day_vFF.pdf.

  36. Faller DV. Response to “selective PKCdelta inhibitor B106 elicits uveal melanoma growth inhibitory effects independent of activated PKC isoforms”. ACS Chem Biol. 2019;14:131.

    Article  CAS  Google Scholar 

  37. Heijkants R, Teunisse A, de Vries J, Ovaa H, Jochemsen A. Selective PKCdelta inhibitor B106 elicits uveal melanoma growth inhibitory effects independent of activated PKC isoforms. ACS Chem Biol. 2019;14:132–6.

    Article  CAS  Google Scholar 

  38. Balasubramanya R, Selvarajan SK, Cox M, Joshi G, Deshmukh S, Mitchell DG, et al. Imaging of ocular melanoma metastasis. Br J Radiol. 2016;89:20160092.

    Article  Google Scholar 

  39. Park JJ, Diefenbach RJ, Byrne N, Long GV, Scolyer RA, Gray ES, et al. Circulating tumor DNA reflects uveal melanoma responses to protein kinase C inhibition. Cancers. 2021;13:1740.

    Article  Google Scholar 

  40. Carita G, Frisch-Dit-Leitz E, Dahmani A, Raymondie C, Cassoux N, Piperno-Neumann S, et al. Dual inhibition of protein kinase C and p53-MDM2 or PKC and mTORC1 are novel efficient therapeutic approaches for uveal melanoma. Oncotarget. 2016;7:33542–56.

    Article  Google Scholar 

  41. Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, et al. RasGRP3 mediates MAPK pathway activation in GNAQ mutant uveal melanoma. Cancer Cell. 2017;31:685–96. e6

    Article  CAS  Google Scholar 

  42. Paradis JS, Acosta M, Saddawi-Konefka R, Kishore A, Gomes F, Arang N, et al. Synthetic lethal screens reveal cotargeting FAK and MEK as a multimodal precision therapy for GNAQ-driven uveal melanoma. Clin Cancer Res. 2021;27:3190–200.

    Article  CAS  Google Scholar 

  43. Harbour JW. Therapeutic escape in Galphaq-mutant uveal melanoma: It’s a FAK. Clin Cancer Res. 2021;27:2967–9.

    Article  CAS  Google Scholar 

  44. Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, et al. ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell. 2016;29:889–904.

    Article  CAS  Google Scholar 

  45. Cerne JZ, Hartig SM, Hamilton MP, Chew SA, Mitsiades N, Poulaki V, et al. Protein kinase C inhibitors sensitize GNAQ mutant uveal melanoma cells to ionizing radiation. Invest Ophthalmol Vis Sci. 2014;55:2130–9.

    Article  CAS  Google Scholar 

Download references

Funding

No financial assistance was received in support of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors acquired the content and interpreted it, as well as drafted/revised the manuscript, approved the final version, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Meredith McKean.

Ethics declarations

Conflict of interest

CL has no competing financial interest to disclose. MM has the following competing interests: Research Grants—Paid to Institution—Ascentage Pharma Group, Bicycle Therapeutics, Dragonfly Therapeutics, Epizyme, Exelixis, Genentech, GlaxoSmithKline, IDEAYA Biosciences, Ikena Oncology, Infinity Pharmaceuticals, Jacobio Pharmaceuticals, Moderna, NBE Therapeutics, Novartis, Oncorus, Plexxikon, Prelude Therapeutics, Regeneron, Sapience Therapeutics, Seattle Genetics, Tizona Therapeutics, TMUNITY Therapeutics, TopAlliance Biosciences, Bayer, BioMed Valley Discoveries, EMD Serono, MedImmune, Nektar Therapeutics, Pfizer, Teneobio, Arvinas, Tempest Therapeutics, Arcus Biosciences, Synthorax, Alpine Immune, Scholar Rock, BioNTech, Erasca, Kechow Pharma, Mereo BioPharma, Foghorn Therapeutics, Pyramid Biosciences, PACT pharma, ImmVira Pharma, Kinnate Biopharma, Metabomed. Consulting/Advisory Role—Paid to Institution—Array BioPharma, AstraZeneca, MedPage Today, Pfizer, Regeneron Pharmaceuticals, Astellas Pharma, BicycleTx Limited, Castle Biosciences, Ideaya Biosciences, iTeos.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lietman, C.D., McKean, M. Targeting GNAQ/11 through PKC inhibition in uveal melanoma. Cancer Gene Ther 29, 1809–1813 (2022). https://doi.org/10.1038/s41417-022-00437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00437-6

This article is cited by

Search

Quick links