Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sunitinib and Axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma

Abstract

Extracellular vesicles (EVs) encompass a wide range of vesicles that are released by all cell types. They package protein, nucleic acids, metabolites, and other cargo that can be delivered to recipient cells and affect their phenotypes. However, little is known about how pharmaceutical agents can alter EV secretion, protein and metabolic cargo, and the active biological processes taking place in these vesicles. In this study, we isolated EVs from human renal cell carcinoma (RCC) cells treated with tyrosine kinase inhibitors (TKIs) Sunitinib and Axitinib. We found these TKIs increase the number of large (lEVs) and small extracellular vesicles (sEVs) secreted from RCC cells in a dose-dependent manner. In addition, quantitative proteomics revealed that metabolic proteins are enriched in sEVs secreted from Sunitinib-treated cells. In particular, the glucose transporter GLUT1 was enriched in sEVs purified from TKI-treated cells. These sEVs displayed increased glucose uptake and glycolytic metabolism compared to sEVs released from vehicle-treated cells. Overexpression of GLUT1 in RCC cells augmented GLUT1 levels in sEVs, which subsequently displayed higher glucose uptake and glycolytic activity. Together, these findings suggest that these TKIs alter metabolic cargo and activity in RCC sEVs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tyrosine kinase inhibitors Sunitinib and Axitinib augment EV secretion.
Fig. 2: Sunitinib increases GLUT1 packaging into RCC sEVs.
Fig. 3: GLUT1 expression is higher and correlates with poor patient survival in RCC.
Fig. 4: sEVs secreted from tyrosine kinase inhibitor-treated cells have increased glucose uptake and glycolytic activity.
Fig. 5: sEVs from cells overexpressing GLUT1 have increased glycolytic activity.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.

    Article  CAS  Google Scholar 

  3. Linehan WM, Schmidt LS, Crooks DR, Wei D, Srinivasan R, Lang M, et al. The metabolic basis of kidney cancer. Cancer Disco. 2019;9:1006–21.

    Article  CAS  Google Scholar 

  4. Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res. 2010;86:236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao Y,EG, Wang E, Pal K, Dutta SK, Bar-Sagi D, et al. VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Res. 2012;72:3912–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal cell carcinoma. N Engl J Med. 2017;376:354–66.

    Article  CAS  PubMed  Google Scholar 

  7. McKay RR, Bossé D, Choueiri TK. Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. J Clin Oncol. 2018;36:JCO2018790253.

  8. Rini BI, Atkins MB. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009;10:992–1000.

    Article  CAS  PubMed  Google Scholar 

  9. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus Axitinib versus Sunitinib for advanced renal cell carcinoma. N Engl J Med. 2019;380:1103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus Axitinib versus Sunitinib for advanced renal cell carcinoma. N Engl J Med. 2019;380:1116–27.

    Article  CAS  PubMed  Google Scholar 

  11. Qu L, Ding J, Chen C, Wu Z-J, Liu B, Gao Y, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29:653–68.

    Article  CAS  PubMed  Google Scholar 

  12. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–88.

    Article  CAS  PubMed  Google Scholar 

  13. Göran Ronquist K. Extracellular vesicles and energy metabolism. Clin Chim Acta. 2019;488:116–21.

    Article  PubMed  CAS  Google Scholar 

  14. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article  PubMed  CAS  Google Scholar 

  15. Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8:220–32.

    Article  CAS  PubMed  Google Scholar 

  16. Carayon K, Chaoui K, Ronzier E, Lazar I, Bertrand-Michel J, Roques V, et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem. 2011;286:34426–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124:3748–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284:34211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panigrahi GK, Praharaj PP, Peak TC, Long J, Singh R, Rhim JS, et al. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep. 2018;8:3853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164.

    Article  CAS  PubMed  Google Scholar 

  22. Sato S, Vasaikar S, Eskaros A, Kim Y, Lewis JS, Zhang B, et al. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight. 2019;4. https://doi.org/10.1172/jci.insight.132447.

  23. Voss BJ, Loh JT, Hill S, Rose KL, McDonald WH, Cover TL. Alteration of the Helicobacter pylori membrane proteome in response to changes in environmental salt concentration. Proteom Clin Appl. 2015;9:1021–34.

    Article  CAS  Google Scholar 

  24. Thissen D, Steinberg L, Kuang D. Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J Educ Behav Stat. 2002;27:77–83.

    Article  Google Scholar 

  25. Valley MP, Karassina N, Aoyama N, Carlson C, Cali JJ, Vidugiriene J. A bioluminescent assay for measuring glucose uptake. Anal Biochem. 2016;505:43–50.

    Article  CAS  PubMed  Google Scholar 

  26. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wood CG, Ferguson JE,3rd, Parker JS, Moore DT, Whisenant JG, Maygarden SJ. et al. Neoadjuvant pazopanib and molecular analysis of tissue response in renal cell carcinoma. JCI Insight. 2020;5:e132. https://doi.org/10.1172/jci.insight.132852.

    Article  Google Scholar 

  28. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu X-D, Hoang A, Zhou L, Kalra S, Yetil A, Sun M, et al. Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer Immunol Res. 2015;3:1017–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu C-C, et al. EZH2 modifies Sunitinib resistance in renal cell carcinoma by kinome reprogramming. Cancer Res. 2017;77:6651–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med. 2011;3:94ra70.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brooks SA, Khandani AH, Fielding JR, Lin W, Sills T, Lee Y, et al. Alternate metabolic programs define regional variation of relevant biological features in renal cell carcinoma progression. Clin Cancer Res. 2016;22:2950–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ronquist KG, Ek B, Stavreus-Evers A, Larsson A, Ronquist G. Human prostasomes express glycolytic enzymes with capacity for ATP production. Am J Physiol Endocrinol Metab. 2013;304:E576–82.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Jeppesen DK, Higginbotham JN, Demory Beckler M, Poulin EJ, Walsh AJ, et al. Mutant KRAS exosomes alter the metabolic state of recipient colonic epithelial cells. Cell Mol Gastroenterol Hepatol. 2018;5:627. e6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ronquist G. Prostasomes are mediators of intercellular communication: from basic research to clinical implications. J Intern Med. 2012;271:400–13.

    Article  CAS  PubMed  Google Scholar 

  37. Kriebel PW, Majumdar R, Jenkins LM, Senoo H, Wang W, Ammu S, et al. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J Cell Biol. 2018;217:2891–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan L, Xia T, Du Y, Liu J, Xie Y, Zhang Y, et al. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB J. 2019;33:8530–42.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Liao T, Liu H, Yuan H, Ouyang T, Wang J, et al. Hypoxic glioma stem cell-derived exosomes containing Linc01060 promote progression of glioma by regulating the MZF1/c-Myc/HIF-1α. Cancer Res. 2020. https://doi.org/10.1158/0008-5472.CAN-20-2270.

  40. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Disco. 2011;10:417–27.

    Article  CAS  Google Scholar 

  41. Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Disco. 2011;1:222–35.

    Article  CAS  Google Scholar 

  42. Biswas S, Troy H, Leek R, Chung Y-L, Li J-L, Raval RR, et al. Effects of HIF-1alpha and HIF2alpha on growth and metabolism of clear-cell renal cell carcinoma 786-0 xenografts. J Oncol. 2010;2010:757908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Turajlic S, Xu H, Litchfield K, Rowan A, Chambers T, Lopez JI, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173:581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monzon FA, Alvarez K, Peterson L, Truong L, Amato RJ, Hernandez-McClain J, et al. Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol. 2011;24:1470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ebright RY, Zachariah MA, Micalizzi DS, Wittner BS, Niederhoffer KL, Nieman LT, et al. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat Commun. 2020;11:6311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res. 2018;78:4586–98.

    Article  CAS  PubMed  Google Scholar 

  47. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76:1770–80.

    Article  CAS  PubMed  Google Scholar 

  48. Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 2014;111:E3234–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 2020;183:94–109.

    Article  PubMed  CAS  Google Scholar 

  50. Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria P-J, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6:11327–41.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell. 2020;78:1019–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020;52:1475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Rathmell and Weaver Laboratories for their support and technical expertise. We also thank the Vanderbilt Cell Imaging Shared Resource (CISR) for their technical expertise on electron microscopy and the Vanderbilt proteomics core for their technical expertise on proteomics. Finally, we thank the patients who agreed to participate in the neoadjuvant Pazopanib study.

Funding

This work was supported by the AACR (WKR, ARL), the Medical Scientist Training Program Grant T32GM007347 (ARL), P01CA229123 and R01CA249424 (AMW), and R01CA217987 (WKR). The Vanderbilt CISR and Mass Spectrometry Research Center receive support from the National Institutes of Health (P30CA068485).

Author information

Authors and Affiliations

Authors

Contributions

ARL performed the experiments, analyzed data, and wrote the manuscript. BGV provided RNAseq data from the neoadjuvant Pazopanib trial. AMW and WKR provided guidance on experimental design. BGV, AMW, and WKR edited the manuscript.

Corresponding author

Correspondence to W. Kimryn Rathmell.

Ethics declarations

Conflict of interest

ARL, BGV, and AMW declare no direct conflict of interest with the contents of this manuscript. Within the past 2 years, WKR has received unrelated clinical research support Bristol-Meyers Squib, Merck, Pfizer, Peloton, Calithera, and Incyte.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, A.R., Vincent, B.G., Weaver, A.M. et al. Sunitinib and Axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma. Cancer Gene Ther 29, 683–696 (2022). https://doi.org/10.1038/s41417-021-00345-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00345-1

This article is cited by

Search

Quick links