Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Streptococcal bacterial components in cancer therapy

Subjects

Abstract

The incidence rate of cancer is steadily increasing all around the world, and there is an urgent need to develop novel and more effective treatment strategies. Recently, bacterial therapy has been investigated as a new approach to target cancer, and is becoming a serious option. Streptococcus strains are among the most common and well-studied virulent bacteria that cause a variety of human infections. Everyone has experienced a sore throat during their lifetime, or has been asymptomatically colonized by streptococci. The ability of Streptococcus bacteria to fight cancer was discovered more than 100 years ago, and over the years has undergone clinical trials, but the mechanism is not yet completely understood. Recently, several animal models and human clinical trials have been reported. Streptococcal strains can have an intrinsic anti-tumor activity, or can activate the host immune system to fight the tumor. Bacteria can selectively accumulate and proliferate in the hypoxic regions of solid tumors. Moreover, the bacteria can be genetically engineered to secrete toxins or enzymes that can specifically attack the tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anti-cancer and carcinogenic effects of different bacteria.
Fig. 2: Primary structures of bovicin HC5 and nisin.

Similar content being viewed by others

Data and material availability

The primary data for this study is available from the authors on request.

References

  1. Ashu EE, Xu J, Yuan ZC. Bacteria in cancer therapeutics: a framework for Effective Therapeutic Bacterial Screening and Identification. J Cancer. 2019;10(8):1781–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742–53.

    Article  CAS  PubMed  Google Scholar 

  4. Patyar S, Joshi R, Byrav DS, Prakash A, Medhi B, Das BK. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci. 2010;17(1):21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yusuf MA, Ichwan SJ, Haziyamin T, Hamid A. Anti-proliferative activities of purified bacteriocin from Enterococcus mundtii strain C4L10 isolated from the caecum of Malaysian non-broiler chicken on cancer cell lines. Int J Pharm Pharm Sci. 2014;7:334–7.

    Google Scholar 

  6. Kamarajan P, Hayami T, Matte B, Liu Y, Danciu T, Ramamoorthy A, et al. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS ONE. 2015;10(7):e0131008.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stachowiak R, Lyzniak M, Budziszewska B, Roeske K, Bielecki J, Hoser G et al. Cytotoxicity of bacterial metabolic products, including listeriolysin O, on leukocyte targets. J. Biomed. Biotechnol. 2012;2012:954375.

  8. Pirnia F, Schneider E, Betticher D, Borner M. Mitomycin C induces apoptosis and caspase-8 and-9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 2002;9(9):905–14.

    Article  CAS  PubMed  Google Scholar 

  9. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nallar SC, Xu DQ, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges. Cytokine. 2017;89:160–72.

    Article  CAS  PubMed  Google Scholar 

  11. Wang K, Kievit FM, Zhang M. Nanoparticles for cancer gene therapy: recent advances, challenges, and strategies. Pharmacol Res. 2016;114:56–66.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang SN, Phan TX, Nam TK, Nguyen VH, Kim HS, Bom HS, et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol Ther: J Am Soc Gene Ther. 2010;18(3):635–42.

    Article  CAS  Google Scholar 

  13. Tarrah A, Castilhos Jd, Rossi RC, Duarte VdS, Ziegler DR, Corich V et al. In vitro Probiotic Potential and Anti-cancer Activity of Newly Isolated Folate-Producing Streptococcus thermophilus Strains. Fron. Microbiol. 2018;9:2214.

  14. Higuchi Y. Antitumor effect of Streptococcus pyogenes by inducing hydrogen peroxide production. Jpn J Cancer Res. 1996;87(12):1271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465.

    Article  CAS  PubMed  Google Scholar 

  16. Lax AJ. Opinion: Bacterial toxins and cancer-a case to answer? Nat Rev Microbiol. 2005;3(4):343–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kipanyula MJ, Etet PFS, Vecchio L, Farahna M, Nukenine EN, Kamdje AHN. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal. 2013;25(2):403–16.

    Article  CAS  PubMed  Google Scholar 

  18. Stoicov C, Saffari R, Cai X, Hasyagar C, Houghton J. Molecular biology of gastric cancer: Helicobacter infection and gastric adenocarcinoma: bacterial and host factors responsible for altered growth signaling. Gene. 2004;341:1–17.

    Article  CAS  PubMed  Google Scholar 

  19. Öğrendik M. Oral bacteria in pancreatic cancer: mutagenesis of the p53 tumour suppressor gene. Int J Clin Exp Pathol. 2015;8(9):11835–6.

    PubMed  PubMed Central  Google Scholar 

  20. Jacob JA. Study links periodontal disease bacteria to pancreatic cancer risk. Jama. 2016;315(24):2653–4.

    Article  CAS  PubMed  Google Scholar 

  21. De Spiegeleer B, Verbeke F, D’Hondt M, Hendrix A, Van De Wiele C, Burvenich C, et al. The quorum sensing peptides PhrG, CSP and EDF promote angiogenesis and invasion of breast cancer cells in vitro. PLoS ONE. 2015;10(3):e0119471.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wynendaele E, Verbeke F, D’Hondt M, Hendrix A, Van De Wiele C, Burvenich C, et al. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides. 2015;64:40–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol therapeutics. 1994;64(3):529–64.

    Article  CAS  Google Scholar 

  24. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893 Clin Orthop Relat Res. 1991;262:3–11.

    Google Scholar 

  25. Coley WB. The therapeutic value of the mixed toxins of the Streptococcus of erysipelas and Bacillus prodigiosus in the treatment of inoperable malignant tumors, with a report of one hundred and sixty cases. 1. Am J Med Sci (1827-1924). 1896;112(3):251.

    Article  Google Scholar 

  26. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marincola FM, Wang E, Herlyn M, Seliger B, Ferrone S. Tumors as elusive targets of T-cell-based active immunotherapy. Trends Immunol. 2003;24(6):335–42.

    Article  CAS  PubMed  Google Scholar 

  28. Wilson M, Seymour R, Henderson B. Bacterial perturbation of cytokine networks. Infect Immun. 1998;66(6):2401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shahabi V, Maciag PC, Rivera S, Wallecha A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioengineered Bugs. 2010;1(4):235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lauer P, Chow MY, Loessner MJ, Portnoy DA, Calendar R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. 2002;184(15):4177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Verch T, Pan ZK, Paterson Y. Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines. Infect Immun. 2004;72(11):6418–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei MQ, Ellem KA, Dunn P, West MJ, Bai CX, Vogelstein B. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Eur J cancer (Oxf, Engl: 1990). 2007;43(3):490–6.

    Article  Google Scholar 

  33. Chang J, Liu Y, Han B, Zhou C, Bai C, Li J. Pseudomonas aeruginosa preparation plus chemotherapy for advanced non-small-cell lung cancer: a randomized, multicenter, double-blind phase III study. Med Oncol (Northwood, Lond, Engl). 2015;32(5):139.

    Article  Google Scholar 

  34. Hetz C, Bono MR, Barros LF, Lagos R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA. 2002;99(5):2696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pawar V, Crull K, Komor U, Kasnitz N, Frahm M, Kocijancic D, et al. Murine solid tumours as a novel model to study bacterial biofilm formation in vivo. J Intern Med. 2014;276(2):130–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ganai S, Arenas RB, Sauer JP, Bentley B, Forbes NS. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer gene Ther. 2011;18(7):457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan L, Kanada M, Zhang J, Okazaki S, Terakawa S. Photodynamic treatment of tumor with bacteria expressing KillerRed. PloS one. 2015;10(7):e0131518.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Danino T, Prindle A, Hasty J, Bhatia S. Measuring growth and gene expression dynamics of tumor-targeted S. typhimurium bacteria. J visualized experiments: JoVE. 2013;77:e50540.

    Google Scholar 

  39. Leschner S, Westphal K, Dietrich N, Viegas N, Jablonska J, Lyszkiewicz M, et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PloS one. 2009;4(8):e6692.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Middlebrook JL, Dorland RB. Bacterial toxins: cellular mechanisms of action. Microbiological Rev. 1984;48(3):199–221.

    Article  CAS  Google Scholar 

  41. Staedtke V, Roberts NJ, Bai RY, Zhou S. Clostridium novyi-NT in cancer therapy. Genes Dis. 2016;3(2):144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flickinger JC, Jr., Rodeck U, Snook AE. Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines 2018;6(3):48.

  43. Uchugonova A, Zhang Y, Salz R, Liu F, Suetsugu A, Zhang L, et al. Imaging the different mechanisms of prostate cancer cell-killing by tumor-targeting Salmonella typhimurium A1-R. Anticancer Res. 2015;35(10):5225–9.

    CAS  PubMed  Google Scholar 

  44. Lee CH, Lin ST, Liu JJ, Chang WW, Hsieh JL, Wang WK. Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Ther. 2014;21(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  45. Uchugonova A, Zhao M, Zhang Y, Weinigel M, König K, Hoffman RM. Cancer-cell killing by engineered Salmonella imaged by multiphoton tomography in live mice. Anticancer Res. 2012;32(10):4331–7.

    CAS  PubMed  Google Scholar 

  46. Liu B, Jiang Y, Dong T, Zhao M, Wu J, Li L, et al. Blockage of autophagy pathway enhances Salmonella tumor-targeting. Oncotarget. 2016;7(16):22873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saccheri F, Pozzi C, Avogadri F, Barozzi S, Faretta M, Fusi P, et al. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med. 2010;2(44):44ra57.

    Article  PubMed  Google Scholar 

  48. Chang WW, Lai CH, Chen MC, Liu CF, Kuan YD, Lin ST, et al. Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int J cancer. 2013;133(8):1926–35.

    Article  CAS  PubMed  Google Scholar 

  49. Lin HC, Yang CJ, Kuan YD, Wang WK, Chang WW, Lee CH. The inhibition of indoleamine 2, 3-dioxygenase 1 by connexin 43. Int J Med Sci. 2017;14(12):1181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phan TX, Nguyen VH, Duong MT, Hong Y, Choy HE, Min JJ. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol. 2015;59(11):664–75.

    Article  CAS  PubMed  Google Scholar 

  51. Kim JE, Phan TX, Nguyen VH, Dinh-Vu HV, Zheng JH, Yun M, et al. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics. 2015;5(12):1328–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beutler B, Cerami A. The biology of cachectin/TNF-a primary mediator of the host response. Annu Rev Immunol. 1989;7:625–55.

    Article  CAS  PubMed  Google Scholar 

  53. Kocijancic D, Leschner S, Felgner S, Komoll RM, Frahm M, Pawar V, et al. Therapeutic benefit of Salmonella attributed to LPS and TNF-α is exhaustible and dictated by tumor susceptibility. Oncotarget. 2017;8(22):36492–508.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 2002;4(9):903–14.

    Article  CAS  PubMed  Google Scholar 

  55. Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, Zhang D. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res. 2011;71(7):2466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Mènard S, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol (Baltim, Md: 1950). 2006;176(11):6624–30.

    Article  CAS  Google Scholar 

  57. Kupz A, Curtiss R 3rd, Bedoui S, Strugnell RA. In vivo IFN-γ secretion by NK cells in response to Salmonella typhimurium requires NLRC4 inflammasomes. PloS one. 2014;9(5):e97418.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lancefield RC. A serological differentiation of human and other groups of hemolytic Streptococci. J Exp Med. 1933;57(4):571–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev. 2002;15(4):613–30.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Doern CD, Burnham CA. It’s not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol. 2010;48(11):3829–35.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xicohtencatl-Cortés J, Lyons S, Chaparro AP, Hernández DR, Saldaña Z, Ledesma MA, et al. Identification of proinflammatory flagellin proteins in supernatants of Vibrio cholerae O1 by proteomics analysis. Mol Cell Proteom. 2006;5(12):2374–83.

    Article  Google Scholar 

  62. Brochet M, Couvé E, Glaser P, Guédon G, Payot S. Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol. 2008;190(20):6913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mandlik A, Swierczynski A, Das A, Ton-That H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 2008;16(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brodeur BR, Boyer M, Charlebois I, Hamel J, Couture F, Rioux CR, et al. Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect Immun. 2000;68(10):5610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khare B, Pilus SVLN. biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly. Protein Sci: a Publ Protein Soc. 2017;26(8):1458–73.

    Article  CAS  Google Scholar 

  66. Nassif X, Lowy J, Stenberg P, O’Gaora P, Ganji A, So M. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol. 1993;8(4):719–25.

    Article  CAS  PubMed  Google Scholar 

  67. Khodaei F, Najafi M, Hasani A, Kalantar E, Sharifi E, Amini A, et al. Pilus-encoding islets in S. agalactiae and its association with antibacterial resistance and serotype distribution. Microb Pathog. 2018;116:189–94.

    Article  CAS  PubMed  Google Scholar 

  68. Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, Maione D, et al. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol. 2006;61(1):126–41.

    Article  CAS  PubMed  Google Scholar 

  69. Konto-Ghiorghi Y, Mairey E, Mallet A, Duménil G, Caliot E, Trieu-Cuot P, et al. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog. 2009;5(5):e1000422.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers. 2010;94(4):385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khare B, Krishnan V, Rajashankar KR, Xin HIH, Ton-That M. H et al. Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1. PLoS ONE. 2011;6(8):e22995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma P, Lata H, Arya DK, Kashyap AK, Kumar H, Dua M, et al. Role of pilus proteins in adherence and invasion of Streptococcus agalactiae to the lung and cervical epithelial cells. J Biol Chem. 2013;288(6):4023–34.

    Article  CAS  PubMed  Google Scholar 

  73. Martins ER, Andreu A, Melo-Cristino J, Ramirez M. Distribution of pilus islands in Streptococcus agalactiae that cause human infections: insights into evolution and implication for vaccine development. Clin Vaccin immunology. 2013;20(2):313–6.

    Article  CAS  Google Scholar 

  74. Wang JL, Bu RE, Wu JH, Xi LGW, Chen JL, Sun LJ, et al. Immunizing mice using different combination antigens of the PI-2a fimbria subunit of Streptococcus agalactiae. Iran J Vet Res. 2019;20(3):199–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gupalova T, Leontieva G, Kramskaya T, Grabovskaya K, Bormotova E, Korjevski D, et al. Development of experimental GBS vaccine for mucosal immunization. PLoS ONE. 2018;13(5):e0196564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Santillan DA, Rai KK, Santillan MK, Krishnamachari Y, Salem AK, Hunter SK. Efficacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. Am J Obstet Gynecol. 2011;205(3):249.e1–8.

    Article  Google Scholar 

  77. Hunter SK, Andracki ME, Krieg AM. Biodegradable microspheres containing group B Streptococcus vaccine: immune response in mice. Am J Obstet Gynecol. 2001;185(5):1174–9.

    Article  CAS  PubMed  Google Scholar 

  78. Suvorov A, Ustinovitch I, Meringova L, Grabovskaya K, Leontieva G, Vorobieva E, et al. Construction of recombinant polypeptides based on beta antigen C (Bac) protein & their usage for protection against group B streptococcal infection. Indian J Med Res. 2004;119(Suppl):228–32.

    CAS  PubMed  Google Scholar 

  79. Desheva YA, Leontieva GF, Kramskaya TA, Smolonogina TA, Grabovskaya KB, Kiseleva IV, et al. Evaluation in mouse model of combined virus-bacterial vaccine based on attenuated influenza A(H7N3) virus and the group B Streptococcus recombinant polypeptides. open Microbiol J. 2016;10:168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Desheva YA, Leontieva GF, Kramskaya TA, Smolonogina TA, Grabovskaya KB, Landgraf GO, et al. Prevention of influenza A(H7N9) and bacterial Infections in mice using intranasal immunization with live influenza vaccine and the group B Streptococcus recombinant polypeptides. Virology: Res Treat. 2017;8:1178122x17710949.

    Google Scholar 

  81. Jerlström PG, Talay SR, Valentin-Weigand P, Timmis KN, Chhatwal GS. Identification of an immunoglobulin A binding motif located in the beta-antigen of the c protein complex of group B streptococci. Infect Immun. 1996;64(7):2787–93.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jarva H, Jokiranta TS, Würzner R, Meri S. Complement resistance mechanisms of streptococci. Mol Immunol. 2003;40(2-4):95–107.

    Article  CAS  PubMed  Google Scholar 

  83. Marques MB, Kasper DL, Pangburn MK, Wessels MR. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun. 1992;60(10):3986–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baker CJ, Kasper DL. Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. N. Engl J Med. 1976;294(14):753–6.

    Article  CAS  PubMed  Google Scholar 

  85. Baker CJ, Carey VJ, Rench MA, Edwards MS, Hillier SL, Kasper DL, et al. Maternal antibody at delivery protects neonates from early onset group B streptococcal disease. J Infect Dis. 2014;209(5):781–8.

    Article  CAS  PubMed  Google Scholar 

  86. Lin FY, Philips JB 3rd, Azimi PH, Weisman LE, Clark P, Rhoads GG, et al. Level of maternal antibody required to protect neonates against early-onset disease caused by group B Streptococcus type Ia: a multicenter, seroepidemiology study. J Infect Dis. 2001;184(8):1022–8.

    Article  CAS  PubMed  Google Scholar 

  87. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin developmental Immunol. 2012;2012:985646.

    Article  Google Scholar 

  88. Russell NJ, Seale AC, O’Driscoll M, O’Sullivan C, Bianchi-Jassir F, Gonzalez-Guarin J, et al. Maternal colonization with group B Streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin Infect Dis. 2017;65(suppl_2):S100–s111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Buurman ET, Timofeyeva Y, Gu J, Kim JH, Kodali S, Liu Y, et al. A novel hexavalent capsular polysaccharide conjugate vaccine (GBS6) for the prevention of neonatal group B Streptococcal infections by maternal immunization. J Infect Dis. 2019;220(1):105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rivera-Hernandez T, Carnathan DG, Jones S, Cork AJ, Davies MR, Moyle PM, et al. An experimental group A Streptococcus vaccine that reduces pharyngitis and tonsillitis in a nonhuman primate model. MBio. 2019;10(2):e00693–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. HogenEsch H, Dunham A, Burlet E, Lu F, Mosley YYC, Morefield G. Preclinical safety study of a recombinant Streptococcus pyogenes vaccine formulated with aluminum adjuvant. J Appl Toxicol. 2017;37(2):222–30.

    Article  CAS  PubMed  Google Scholar 

  92. Thompson A, Lamberth E, Severs J, Scully I, Tarabar S, Ginis J, et al. Phase 1 trial of a 20-valent pneumococcal conjugate vaccine in healthy adults. Vaccine. 2019;37(42):6201–7.

    Article  CAS  PubMed  Google Scholar 

  93. Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol. 2005;3(5):371–82.

    Article  CAS  PubMed  Google Scholar 

  94. Yamaguchi Y, Inouye M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol. 2011;9(11):779–90.

    Article  CAS  PubMed  Google Scholar 

  95. Hayes F. Toxins-Antitoxins: Plasmid maint, program cell death, cell cycle arrest. Science 2003;301(5639):1496–9.

  96. Hayes F, Kedzierska B. Regulating toxin-antitoxin expr: controlled detonation intracell mol timebombs. Toxins (Basel). 2014;6(1):337–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12(4):208–14.

    Article  CAS  PubMed  Google Scholar 

  98. Davis-Dusenbery BN, Hata A. MicroRNA in cancer: the involvement of aberrant MicroRNA biogenesis regulatory pathways. Genes Cancer. 2010;1(11):1100–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mutschler H, Gebhardt M, Shoeman RL, Meinhart A. A novel mechanism of programmed cell death in bacteria by toxin–antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 2011;9(3):e1001033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Song S, Wood TK. Post-segregational killing and phage inhibition are not mediated by cell death through toxin/antitoxin systems. Front Biol. 2018;9:814.

    Google Scholar 

  101. Aakre CD, Phung TN, Huang D, Laub MT. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Mol Cell. 2013;52(5):617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Unterholzner SJ, Poppenberger B, Rozhon W. Toxin–antitoxin systems. Mob Genet Elem. 2013;3(5):e26219.

    Article  Google Scholar 

  103. Goormaghtigh F, Fraikin N, Putrinš M, Hallaert T, Hauryliuk V, Garcia-Pino A, et al. Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli Type II persister cells. mBio. 2018;9(3):e00640–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct. 2009;4(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chan WT, Moreno-Córdoba I, Yeo CC, Espinosa M. Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev. 2012;76(4):773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA. Heterologous expression of toxins from bacterial toxin-antitoxin systems in eukaryotic. Cells: Strateg Appl. 2016;8(2):49.

    Google Scholar 

  107. Houri H, Ghalavand Z. Exploiting yoeB-yefM toxin-antitoxin Syst Streptococcus pneumoniae selective killing miR-21 overexpressing breast cancer cell line (MCF-7). J Cell Physiol. 2020;235(3):2925–36.

    Article  CAS  PubMed  Google Scholar 

  108. Novak R, Charpentier E, Braun JS, Tuomanen E. Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. Mol Cell. 2000;5(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  109. Linton KJ, Higgins CF. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol. 1998;28(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  110. Lee DG, Hahm KS, Park Y, Kim HY, Lee W, Lim SC, et al. Functional and structural characteristics of anticancer peptide Pep27 analogues. Cancer cell Int. 2005;5:21.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mantovani HC, Hu H, Worobo RW, Russell JB. Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiol (Read, Engl). 2002;148(Pt 11):3347–52.

    Article  CAS  Google Scholar 

  112. Mantovani HC, Russell JB. Inhibition of Listeria monocytogenes by bovicin HC5, a bacteriocin produced by Streptococcus bovis HC5. Int J food Microbiol. 2003;89(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  113. Lima JR, Ribon Ade O, Russell JB, Mantovani HC. Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro. FEMS Microbiol Lett. 2009;292(1):78–84.

    Article  CAS  PubMed  Google Scholar 

  114. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science. 1999;286(5448):2361–4.

    Article  CAS  PubMed  Google Scholar 

  115. Breukink E, van Heusden HE, Vollmerhaus PJ, Swiezewska E, Brunner L, Walker S, et al. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem. 2003;278(22):19898–903.

    Article  CAS  PubMed  Google Scholar 

  116. Paiva AD, Breukink E, Mantovani HC. Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrobial Agents Chemother. 2011;55(11):5284–93.

    Article  CAS  Google Scholar 

  117. Paiva AD, Irving N, Breukink E, Mantovani HC. Interaction with lipid II induces conformational changes in bovicin HC5 structure. Antimicrobial Agents Chemother. 2012;56(9):4586–93.

    Article  CAS  Google Scholar 

  118. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochemical J. 1993;294(Pt 1):1–14.

    Article  CAS  Google Scholar 

  119. Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiol (Read, Engl). 2012;158(Pt 11):2851–8.

    Article  CAS  Google Scholar 

  120. Lee JH, Moore LD, Kumar S, Pritchard DG, Ponnazhagan S, Deivanayagam C. Bacteriophage hyaluronidase effectively inhibits growth, migration and invasion by disrupting hyaluronan-mediated Erk1/2 activation and RhoA expression in human breast carcinoma cells. Cancer Lett. 2010;298(2):238–49.

    Article  CAS  PubMed  Google Scholar 

  121. Lee JH, Moore L, Kumar S, DeLucas L, Pritchard D, Ponnazhagan S et al. In vitro studies on anti-cancer effect of Streptococcus pyogenes phage hyaluronidase (HylP) on breast cancer. In: AACR, 2008.

  122. Yoshida J, Takamura S, Ishibashi T, Nishio M. Antiproliferative and apoptosis-inducing effects of an antitumor glycoprotein from Streptococcus pyogenes. Anticancer Res. 1999;19(3A):1865–71.

    CAS  PubMed  Google Scholar 

  123. Kong D, Liu Y, Li Z, Cui Q, Wang K, Wu K, et al. OK-432 (Sapylin) reduces seroma formation after axillary lymphadenectomy in breast cancer. J Investigative Surg. 2017;30(1):1–5.

    Article  Google Scholar 

  124. Yang Y, Gao E, Liu X, Ye Z, Chen Y, Li Q, et al. Effectiveness of OK-432 (Sapylin) to reduce seroma formation after axillary lymphadenectomy for breast cancer. Ann Surg Oncol. 2013;20(5):1500–4.

    Article  PubMed  Google Scholar 

  125. Jia LJ, Wei DP, Sun QM, Huang Y, Wu Q, Hua ZC. Oral delivery of tumor-targeting Salmonella for cancer therapy in murine tumor models. Cancer Sci. 2007;98(7):1107–12.

    Article  CAS  PubMed  Google Scholar 

  126. Hirabayashi K, Yanagisawa R, Saito S, Higuchi Y, Koya T, Sano K, et al. Feasibility and immune response of WT1 peptide vaccination in combination with OK-432 for paediatric solid tumors. Anticancer Res. 2018;38(4):2227–34.

    CAS  PubMed  Google Scholar 

  127. Kuroki H, Morisaki T, Matsumoto K, Onishi H, Baba E, Tanaka M, et al. Streptococcal preparation OK-432: a new maturation factor of monocyte-derived dendritic cells for clinical use. Cancer Immunol, immunotherapy. 2003;52(9):561–8.

    Article  CAS  Google Scholar 

  128. Mitsui H, Inozume T, Kitamura R, Shibagaki N, Shimada S. Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC Class I and Class II and elicits superior antitumor immunity. J Investigative Dermatol. 2006;126(8):1804–12.

    Article  CAS  Google Scholar 

  129. Kanzaki N, Terashima M, Kashimura S, Hoshino M, Ohtani S, Matsuyama S, et al. Understanding the response of dendritic cells to activation by streptococcal preparation OK-432. Anticancer Res. 2005;25:4231–8.

    CAS  PubMed  Google Scholar 

  130. Okamoto M, Oshikawa T, Tano T, Ahmed SU, Kan S, Sasai A, et al. Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling. J Immunother. 2006;29(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  131. Endo H, Saito T, Kenjo A, Hoshino M, Terashima M, Sato T, et al. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK-432 for resectable pancreatic cancer patients. J Hepatobiliary-Pancreat Sci. 2012;19(4):465–75.

    Article  PubMed  Google Scholar 

  132. Santi I, Maione D, Galeotti CL, Grandi G, Telford JL, Soriani M. BibA induces opsonizing antibodies conferring in vivo protection against group B Streptococcus. J Infect Dis. 2009;200(4):564–70.

    Article  CAS  PubMed  Google Scholar 

  133. Baker CJ, Paoletti LC, Rench MA, Guttormsen HK, Carey VJ, Hickman ME, et al. Use of capsular polysaccharide-tetanus toxoid conjugate vaccine for type II group B Streptococcus in healthy women. J Infect Dis. 2000;182(4):1129–38.

    Article  CAS  PubMed  Google Scholar 

  134. Shen X, Lagergard T, Yang Y, Lindblad M, Fredriksson M, Holmgren J, et al. Streptococcus capsular polysaccharide-cholera toxin B subunit conjugate vaccines prepared by different methods for intranasal immunization. Infect Immun. 2001;69(1):297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Carboni F, Angiolini F, Fabbrini M, Brogioni B, Corrado A, Berti F, et al. Evaluation of immune responses to Group B Streptococcus Type III oligosaccharides containing a minimal protective epitope. J Infect Dis. 2020;221(6):943–7.

    CAS  PubMed  Google Scholar 

  136. Pastural E, McNeil SA, MacKinnon-Cameron D, Ye L, Langley JM, Stewart R, et al. Safety and immunogenicity of a 30-valent M protein-based group a streptococcal vaccine in healthy adult volunteers: a randomized, controlled phase I study. Vaccine. 2020;38(6):1384–92.

    Article  CAS  PubMed  Google Scholar 

  137. Pandey M, Powell J, Calcutt A, Zaman M, Phillips ZN, Ho MF, et al. Physicochemical characterisation, immunogenicity and protective efficacy of a lead streptococcal vaccine: progress towards Phase I trial. Sci Rep. 2017;7(1):1–11.

    Article  Google Scholar 

  138. Sekuloski S, Batzloff MR, Griffin P, Parsonage W, Elliott S, Hartas J. et al. Evaluation of safety and immunogenicity of a group A streptococcus vaccine candidate (MJ8VAX) in a randomized clinical trial. PLoS ONE 2018;13(7):e0198658.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hellerqvist CG, Thurman GB, Page DL, Wang Y-F, Russell BA, Montgomery CA, et al. Antitumor effects of GBS toxin: a polysaccharide exotoxin from group Bβ-hemolytic streptococcus. J cancer Res Clin Oncol. 1993;120(1-2):63–70.

    Article  CAS  PubMed  Google Scholar 

  140. Miyake K, Yamamoto S, Iijima S. Blocking adhesion of cancer cells to endothelial cell types by S. agalactiae type-specific polysaccharides. Cytotechnology. 1996;22(1-3):205–9.

    Article  CAS  PubMed  Google Scholar 

  141. Oshikawa T, Okamoto M, Tano T, Sasai A, Kan S, Moriya Y, et al. Antitumor effect of OK-432-derived DNA: one of the active constituents of OK-432, a streptococcal immunotherapeutic agent. J Immunother. 2006;29(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  142. Łukasiewicz K, Fol M. Microorganisms in the treatment of cancer: advantages and limitations. J. Immunol. Res. 2018;2018:2397808.

  143. Yoshida J, Takamura S, Suzuki S. Evidence for the involvement of sulfhydryl groups in the expression of antitumor activity of streptococcal acid glycoprotein (SAGP) purified from crude extract of Streptococcus pyogenes. Anticancer Res. 1994;14(5A):1833–7.

    CAS  PubMed  Google Scholar 

  144. Karbach J, Neumann A, Brand K, Wahle C, Siegel E, Maeurer M, et al. Phase I clinical trial of mixed bacterial vaccine (Coley’s toxins) in patients with NY-ESO-1 expressing cancers: immunological effects and clinical activity. Clin Cancer Res. 2012;18(19):5449–59.

    Article  CAS  PubMed  Google Scholar 

  145. Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy—enemies in the past, but allies at present. Infect Agents Cancer. 2018;13:9.

    Article  Google Scholar 

Download references

Funding

MRH was supported by US NIH Grants R01AI050875 and R21AI121700.

Author information

Authors and Affiliations

Authors

Contributions

HM and MRH contributed in conception, design, statistical analysis and drafting of the manuscript. RO, ZM, LSH, SAT, MS, DE, MM-T, AJ, AM, and KM contributed in data collection and manuscript drafting. All authors approved the final version for submission.

Corresponding authors

Correspondence to Ranaa Okhravi, Michael R. Hamblin or Hamed Mirzaei.

Ethics declarations

Conflict of interest

MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc, Cleveland, OH; BeWell Global Inc, Wan Chai, Hong Kong; Hologenix Inc. Santa Monica, CA; LumiTheraInc, Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc, Bee Cave, TX; Medical Coherence, Boston MA; NeuroThera, Newark DE; JOOVV Inc, Minneapolis-St. Paul MN; AIRx Medical, Pleasanton CA; FIR Industries, Inc. Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc, Lansing MI; Illumiheal&Petthera, Shoreline, WA; MB Lasertherapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp. Incline Village, NV; Niraxx Light Therapeutics, Inc, Boston, MA. Consulting; Lexington Int, Boca Raton, FL; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, Netherlands; Johnson & Johnson Inc, Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stockholdings: Global Photon Inc, Bee Cave, TX; Mitonix, Newark, DE. The other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzhoseyni, Z., Shojaie, L., Tabatabaei, S.A. et al. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther 29, 141–155 (2022). https://doi.org/10.1038/s41417-021-00308-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00308-6

Search

Quick links