Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The future of microfluidics in immune checkpoint blockade

Abstract

Recent advances in microfluidic techniques have enabled researchers to study sensitivities to immune checkpoint therapy, to determine patients’ response to particular antibody treatment. Utilization of this technology is helpful in antibody discovery and in the design of personalized medicine. A variety of microfluidic approaches can provide several functions in processes such as immunologic, genomic, and/or transcriptomic analysis with the aim of improving the efficacy and coverage of immunotherapy, particularly immune checkpoint blockade (ICB). To achieve this requires researchers to overcome the challenges in the current state of the technology. This review looks into the advancements in microfluidic technologies applied to researches on immune checkpoint blockade treatment and its potential shift from proof-of-principle stage to clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microfluidic devices developed for therapy assessment and disease monitoring.
Fig. 2: Microfluidic tools with integration of single-cell RNA sequencings and analysis.
Fig. 3: Microfluidic tools for the evaluation of the efficacy and sensitivity of immunotherapies.

Similar content being viewed by others

References

  1. Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol. 2019;2019:4508794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Reports and Data. Antibodies, Vaccines, Cytokines), By Applications (Lung Cancer, Breast Cancer, Liver Cancer, Head & Neck Cancer), By End Users (Hospitals, Cancer Research Centers, Clinics), And Segment Forecasts, 2016-2026. Available from: https://www.reportsanddata.com/report-detail/cancer-immunotherapy-market. Accessed 1 May 2020.

  3. Chao M, Harris J, Morales RT, Chen W. Microfluidics for immuno-oncology. In: Jiang X, editor. Nanofluidics and microfluidics. 1st edn. Wiley-VCH; 2020. p. 149–76.

  4. Mitchell DA, Sampson JH. Toward effective immunotherapy for the treatment of malignant brain tumors. Neurotherapeutics. 2009;6:527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nixon NA, Blais N, Ernst S, Kollmannsberger C, Bebb G, Butler M, et al. Current landscape of immunotherapy in the treatment of solid tumours, with future opportunities and challenges. Curr Oncol. 2018;25:e373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li L, Yan S, Lin B, Shi Q, Lu Y. Single-cell proteomics for cancer immunotherapy. In: Broome AM, editor. Cancer nanotechnology. Elsevier; 2018. p. 185–207.

  7. Ventola CL. Cancer immunotherapy, part 2: efficacy, safety, and other clinical considerations. P T. 2017;42:452–63.

    PubMed  PubMed Central  Google Scholar 

  8. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kretschmer A, Schwanbeck R, Valerius T, Rösner T. Antibody isotypes for tumor immunotherapy. Transfus Med Hemother. 2017;44:320–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2:e192535.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med. 2018;50:109.

    PubMed Central  Google Scholar 

  12. Kulasinghe A, Wu H, Punyadeera C, Warkiani M. The use of microfluidic technology for cancer applications and liquid biopsy. Micromachines. 2018;9:397.

    Article  PubMed Central  Google Scholar 

  13. Sinha N, Subedi N, Tel J. Integrating immunology and microfluidics for single immune cell analysis. Front Immunol. 2018;9:2373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lu C, Verbridge S, editors. Microfluidic methods for molecular biology. Cham: Springer; 2016.

  15. Chuah S, Chew V. High-dimensional immuneprofiling in cancer: implications for immunotherapy. J Immunother Cancer. 2020;8:e000363.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yu Y, Cui J. Present and future of cancer immunotherapy: a tumor microenvironmental perspective. Oncol Lett. 2018;16:4105–13.

    PubMed  PubMed Central  Google Scholar 

  17. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Microfluidics: a new tool for modeling cancer-immune interactions. Trends Cancer. 2016;2:6–19.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fares J, Fares MY, Fares Y. Immune checkpoint inhibitors: advances and impact in neuro-oncology. Surg Neurol Int. 2019;10:9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bird L. MR1-restricted pan-cancer T cells. Nat Rev Immunol. 2020;20:141.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. FEBS J. 2019;286:4160–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jain P, Jain C, Velcheti V. Role of immune-checkpoint inhibitors in lung cancer. Ther Adv Respir Dis. 2018;12:1–13.

    Article  CAS  Google Scholar 

  22. An X, Varadarajan N. Single-cell technologies for profiling T cells to enable monitoring of immunotherapies. Curr Opin Chem Eng. 2018;19:142–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Armbrecht L, Müller RS, Nikoloff J, Dittrich PS. Single-cell protein profiling in microchambers with barcoded beads. Microsyst Nanoeng. 2019;5:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang X, editor. Nanotechnology and microfluidics. 1st edn. Wiley-VCH; 2020.

  25. Merouane A, Rey-Villamizar N, Lu Y, Liadi I, Romain G, Lu J, et al. Automated profiling of individual cell–cell interactions from high-throughput time-lapse imaging microscopy in nanowell grids (TIMING). Bioinformatics 2015;31:3189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu Y, Yang L, Wei W, Shi Q. Microchip-based single-cell functional proteomics for biomedical applications. Lab Chip. 2017;17:1250–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei W, Shin YS, Ma C, Wang J, Elitas M, Fan R, et al. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Med. 2013;5:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yang L, Wang Z, Deng Y, Li Y, Wei W, Shi Q. Single-cell, multiplexed protein detection of rare tumor cells based on a beads-on-barcode antibody microarray. Anal Chem. 2016;88:11077–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathur L, Ballinger M, Utharala R, Merten C. Microfluidics as an enabling technology for personalized cancer therapy. Small. 2020;16:1904321.

    Article  CAS  Google Scholar 

  30. Truini A, Alama A, Dal Bello MG, Coco S, Vanni I, Rijavec E, et al. Clinical applications of circulating tumor cells in lung cancer patients by CellSearch system. Front Oncol. 2014;4:242.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Janning M, Kobus F, Babayan A, Wikman H, Velthaus JL, Bergmann S, et al. Determination of pd-l1 expression in circulating tumor cells of NSCLC patients and correlation with response to PD-1/PD-L1 inhibitors. Cancers 2019;11:835.

    Article  CAS  PubMed Central  Google Scholar 

  32. Nicolazzo C, Raimondi C, Mancini M, Caponnetto S, Gradilone A, Gandini O, et al. Monitoring pd-l1 positive circulating tumor cells in non-small cell lung cancer patients treated with the pd-1 inhibitor nivolumab. Sci Rep. 2016;6:31726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kloten V, Lampignano R, Krahn T, Schlange T. Circulating tumor cell PD-L1 expression as biomarker for therapeutic efficacy of immune checkpoint inhibition in NSCLC. Cells. 2019;8:809.

    Article  CAS  PubMed Central  Google Scholar 

  34. Harb W, Fan A, Tran T, Danila DC, Keys D, Schwartz M, et al. Mutational analysis of circulating tumor cells using a novel microfluidic collection device and qPCR assay. Transl Oncol. 2013;6:528–38.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Po JW, Ma Y, Balakrishna B, Brungs D, Azimi F, de Souza P, et al. Immunomagnetic isolation of circulating melanoma cells and detection of PD-L1 status. PLoS ONE. 2019;14:e0211866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jan YJ, Chen JF, Zhu Y, Lu YT, Chen SH, Chung H, et al. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev. 2018;125:78–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Winograd P, Hou S, Court CM, Lee YT, Chen PJ, Zhu Y, et al. Hepatocellular carcinoma–circulating tumor cells expressing PD-L1 are prognostic and potentially associated with response to checkpoint inhibitors. Hepatol. Commun. 2020. https://doi.org/10.1002/hep4.1577.

  38. Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16:489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014;14:1891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C. Microfluidic technology for clinical applications of exosomes. Micromachines 2019;10:392.

    Article  PubMed Central  Google Scholar 

  41. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PD-L1 in tumour immune evasion. Nat Rev Immunol. 2020;20:209–15.

    Article  CAS  PubMed  Google Scholar 

  43. Kim DH, Kim H, Choi YJ, Kim SY, Lee JE, Sung KJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med. 2019;51:1–13.

    PubMed  PubMed Central  Google Scholar 

  44. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50:96.

    Article  PubMed Central  CAS  Google Scholar 

  45. Zou D, Cui D. Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol Med. 2018;15:335–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho H, Kim J, Song H, Sohn KY, Jeona MH, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2018;143:2936–70.

    Article  CAS  PubMed  Google Scholar 

  47. Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Demaree B, Weisgerber D, Lan F, Abate AR. An ultrahigh-throughput microfluidic platform for single-cell genome sequencing. J Vis Exp. 2018;135:e57598.

    Google Scholar 

  49. Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new developments and medical applications. Cell Biosci. 2019;9:53.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping the mouse cell atlas by microwell-seq. Cell 2018;172:1091–107.

    Article  CAS  PubMed  Google Scholar 

  51. Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 2017;14:955–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bratman SV, Yang, SYC, Iafolla MAJ, Liu Z, Hansen AR, Bedard PL, et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat Cancer. 2020. https://doi.org/10.1038/s43018-020-0096-5.

  53. Jeanbart L, Swartz M. Engineering opportunities in cancer immunotherapy. PNAS. 2015;112:14467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thurin M, Cesano A, Marincola F, editors. Biomarkers for immunotherapy of cancer. Humana; 2020.

  55. Jamalian S, Jafernejad M, Aref A. Microfluidics and future of cancer diagnostics. In: Aref A, Barbie D, editors. Ex vivo engineering of the tumor microenvironment. Cancer drug discovery and development. Cham: Humana; 2016.

    Google Scholar 

  56. Briones J, Espulgar W, Koyama S, Yoshikawa H, Park J, Naito Y, et al. A microfluidic platform for single cell fluorometric granzyme B profiling. Theranostics. 2020;10:123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adler A, Mizrahi R, Spindler M, Adams M, Asensio M, Edgar R, et al. Rare, high-affinity mouse anti-PD-1 antibodies that function in checkpoint blockade, discovered using microfluidics and molecular genomics. mAbs. 2017;9:1270–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wuethrich A, Rajkumar AR, Shanmugasundaram KB, Reza K, Dey S, Howard C, et al. Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst 2019;144:6914–21.

    Article  CAS  PubMed  Google Scholar 

  59. Reza KK, Sina AII, Wuethrich A, Grewal Y, Howard C, Korbie D, et al. A SERS microfluidic platform for targeting multiple soluble immune checkpoints. Biosens Bioelectron. 2018;126:178–86.

    Article  PubMed  CAS  Google Scholar 

  60. Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP, et al. 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab Chip. 2018;18:3129–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Balko JM, Sosman JA. A critical need for better cancer immunotherapy models: are organotypic tumor spheroid cultures the answer? Cancer Discov. 2018;8:143–5.

    Article  PubMed  Google Scholar 

  62. Jeffrey T. Borenstein - microfluidic techniques for cancer therapies. Eur Pharm Rev. Available from: https://www.europeanpharmaceuticalreview.com/article/62865/microfluidic-techniques-for-cancer-therapies. Accessed 1 Aug 2020.

  63. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 2018;8:196–215.

    Article  CAS  PubMed  Google Scholar 

  64. Cañadas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL, et al. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med. 2018;24:1143–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175:998–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rashidian M, LaFleur M, Verschoor V, Dongre A, Zhang Y, Nguyen T, et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. PNAS. 2019;116:16971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwon S, Velasquez FC, Rasmussen JC, Greives MR, Turner KD, Morrow JR, et al. Nanotopography-based lymphatic delivery for improved anti-tumor responses to checkpoint blockade immunotherapy. Theranostics. 2019;9:8332–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Walsh L, Ryu J, Bock S, Koval M, Mauro T, Ross R, et al. Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett. 2015;15:2434–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hong X, Sullivan R, Kalinich M, Kwan TT, Giobbie-Hurder A, Pan S, et al. Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy. PNAS. 2018;115:2467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jammes FC, Maerkl SJ. How single-cell immunology is benefiting from microfluidic technologies. Microsyst Nanoeng. 2020;6:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 2018;24:144–53.

    Article  CAS  PubMed  Google Scholar 

  73. Armbrecht L, Gabernet G, Kurth F, Hiss JA, Schneider G, Dittrich PS. Characterisation of anticancer peptides at the single-cell level. Lab Chip. 2017;17:2933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buder-Bakhaya K, Hassel J. Biomarkers for clinical benefit of immune checkpoint inhibitor treatment—a review from the melanoma perspective and beyond. Front Immunol. 2018;9:1474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ma S, Murphy T, Lu C. Microfluidics for genome-wide studies involving next generation sequencing. Biomicrofluidics. 2017;11:021501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Matula K, Rivello F, Huck W. Single‐cell analysis using droplet microfluidics. Adv Biosys. 2020;4:1900188.

    Article  Google Scholar 

  77. H PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35.

    Article  CAS  Google Scholar 

  78. Adriani G, Pavesi A, Tan AT, Bertoletti A, Theiry JP, Kamm RD. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discov Today. 2016;21:1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid models of tumor immunology. Trends Immunol. 2020;41:652–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao Z, Zheng L, Chen W, Weng W, Song J, Ji J. Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol. 2019;12:126.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sackmann E, Fulton A, Beebe D. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9.

    Article  CAS  PubMed  Google Scholar 

  82. Seah YFS, Hu H, Merten CA. Microfluidic single-cell technology in immunology and antibody screening. Mol Asp Med. 2018;59:47–61.

    Article  CAS  Google Scholar 

  83. Cote B, Rao D, Alany RG, Kwon GS, Alani AWG. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev. 2019;144:16–34.

    Article  CAS  PubMed  Google Scholar 

  84. Wuethrich A, Howard CB, Trau M. Geometric optimisation of electrohydrodynamic fluid flows for enhanced biosensing. Microchem J. 2018;137:231–7.

    Article  CAS  Google Scholar 

  85. Joshi P, Lee MY. High content imaging (HCI) on miniaturized three-dimensional (3D) cell cultures. Biosensors. 2015;5:768–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, et al. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol. 2019;12:48.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol. 2016;10:374–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med. 2013;5:179ra47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang L, Balasubramanian P, Chen AP, Kummar S, Evrard YA, Kinders RJ. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin Oncol. 2016;43:464–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li X, Li Y, Shao W, Li Z, Zhao R, Ye Z. Strategies for enrichment of circulating tumor cells. Transl Cancer Res. 2020;9:3.

    Google Scholar 

  91. Rao Q, Zhang Q, Zheng C, Dai W, Zhang B, Zanetti CI, et al. Detection of circulating tumour cells in patients with epithelial ovarian cancer by a microfluidic system. Int J Clin Exp Pathol. 2017;10:9599–606.

    PubMed  PubMed Central  Google Scholar 

  92. Lu YT, Delijani K, Mecum A, Goldkorn A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag Res. 2019;11:5271–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17:3558–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang F, Liao X, Tian Y, Li G. Exosome separation using microfluidic systems: size‐based, immunoaffinity‐based and dynamic methodologies. Biotechnol J. 2017;12:1600699.

    Article  CAS  Google Scholar 

  95. Jia Y, Ni Z, Sun H, Wang C. Microfluidic approaches toward the isolation and detection of exosome nanovesicles. IEEE Access. 2019;7:45080–98.

    Article  Google Scholar 

  96. Kordasht HK, Hasanzadeh M. Biomedical analysis of exosomes using biosensing methods: recent progress. Anal Methods. 2020;12:2795–811.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the Core Research for Evolutionary Science and Technology (CREST) Program with JST CREST Grant Number JPMJCR16G2, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briones, J., Espulgar, W., Koyama, S. et al. The future of microfluidics in immune checkpoint blockade. Cancer Gene Ther 28, 895–910 (2021). https://doi.org/10.1038/s41417-020-00248-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00248-7

Search

Quick links