Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circular RNAs: epigenetic regulators in cancerous and noncancerous skin diseases

Abstract

The most frequent kind of malignancy in the universe is skin cancer, which has been categorized into non-melanoma and melanoma skin cancer. There are no complete information of the skin carcinogenesis process. A variety of external and internal agents contribute to the non-melanoma and melanoma skin cancer pathogenesis. These factors are epigenetic changes, X-rays, genetic, arsenic compounds, UV rays, and additional chemical products. It was found that there could be a relationship between the appearing novel and more suitable therapies for participants in this class of diseases and detection of basic molecular paths. A covalently closed loop structure bond connecting the 5′ and 3′ ends characterizes a new group of extensively expressed endogenous regulatory RNAs, which are called circular RNAs (circRNAs). Mammals commonly express circRNAs. They are of high importance in tumorigenesis. Multiple lines evidence indicated that a variety of circular RNAs are associated with initiation and development of skin-related diseases such as skin cancers. Given that different circular RNAs (hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL) via targeting various cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7c-3p) exert their effects on skin cancers progression. Herein, for first time, we summarized different circular RNAs in skin cancers and noncancerous diseases. Moreover, we highlighted crosstalk between circular RNAs and ceRNAs in cancerous conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perera E, Gnaneswaran N, Staines C, Win AK, Sinclair R. Incidence and prevalence of non-melanoma skin cancer in Australia: a systematic review. Australas J Dermatol. 2015;56:258–67.

    Article  PubMed  Google Scholar 

  2. Stang A, Pukkala E, Sankila R, Soderman B, Hakulinen T. Time trend analysis of the skin melanoma incidence of Finland from 1953 through 2003 including 16,414 cases. Int J Cancer. 2006;119:380–4.

    Article  CAS  PubMed  Google Scholar 

  3. Mansson-Brahme E, Johansson H, Larsson O, Rutqvist LE, Ringborg U. Trends in incidence of cutaneous malignant melanoma in a Swedish population 1976-1994. Acta Oncol. 2002;41:138–46.

    Article  PubMed  Google Scholar 

  4. Apalla Z, Nashan D, Weller RB, Castellsague X. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther. 2017;7(Suppl 1):5–19.

    Article  Google Scholar 

  5. Monshi B, Vujic M, Kivaranovic D, Sesti A, Oberaigner W, Vujic I, et al. The burden of malignant melanoma–lessons to be learned from Austria. Eur J Cancer. 2016;56:45–53.

    Article  PubMed  Google Scholar 

  6. Ressler J, Silmbrod R, Stepan A, Tuchmann F, Cicha A, Uyanik-Unal K, et al. T-VEC in advanced Melanoma - Complete response in a heart and kidney transplant patient: a case report. Br J Dermatol. 2019;181:186–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 2017;3:17053.

    Article  CAS  PubMed  Google Scholar 

  8. Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 2017;36:4551–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jin X, Feng CY, Xiang Z, Chen YP, Li YM. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis. Oncotarget. 2016;7:66455–67.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Huang XY, Huang ZL, Xu YH, Zheng Q, Chen Z, Song W, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep. 2017;7:5428.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7:26680–91.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tian M, Chen R, Li T, Xiao B. Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance. J Clin Lab Anal. 2018;32. https://doi.org/10.1002/jcla.22281.

    Article  PubMed Central  CAS  Google Scholar 

  13. Luo YH, Zhu XZ, Huang KW, Zhang Q, Fan YX, Yan PW, et al. Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. Biomed Pharmacother. 2017;96:892–8.

    Article  CAS  PubMed  Google Scholar 

  14. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7:e30733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47.

    Article  CAS  PubMed  Google Scholar 

  18. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10:170–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: identification, biogenesis and function. Biochimica et Biophysica Acta. 2016;1859:163–8.

    Article  CAS  Google Scholar 

  21. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792–806.

    Article  CAS  PubMed  Google Scholar 

  23. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.

    Article  CAS  PubMed  Google Scholar 

  24. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

    Article  CAS  PubMed  Google Scholar 

  25. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30:4414–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73:5609–12.

    Article  CAS  PubMed  Google Scholar 

  28. Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol: CB. 2010;20:R858–61.

    Article  CAS  PubMed  Google Scholar 

  29. Bak RO, Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley interdisciplinary reviews: RNA. 2014;5:317–33.

    Article  CAS  PubMed  Google Scholar 

  30. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54:766–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73:1019–30.

    Article  CAS  PubMed  Google Scholar 

  32. Hentze MW, Preiss T. Circular RNAs: splicing’s enigma variations. EMBO J. 2013;32:923–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Sci. 1995;268:415–7.

    Article  CAS  Google Scholar 

  34. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wang Y, Xue D, Li Y, Pan X, Zhang X, Kuang B, et al. The long noncoding RNA MALAT-1 is a novel biomarker in various cancers: a meta-analysis based on the GEO database and literature. J Cancer. 2016;7:991–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yu J, Liu Y, Guo C, Zhang S, Gong Z, Tang Y, et al. Upregulated long non-coding RNA LINC00152 expression is associated with progression and poor prognosis of tongue squamous cell carcinoma. J Cancer. 2017;8:523–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Yu J, Liu Y, Gong Z, Zhang S, Guo C, Li X, et al. Overexpression long non-coding RNA LINC00673 is associated with poor prognosis and promotes invasion and metastasis in tongue squamous cell carcinoma. Oncotarget. 2017;8:16621–32.

    Article  PubMed  Google Scholar 

  39. Cheng DL, Xiang YY, Ji LJ, Lu XJ. Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives. Tumour Biol: J Int Soc Oncodev Biol Med. 2015;36:479–88.

    Article  CAS  Google Scholar 

  40. Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov. 2013;3:1113–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43:854–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ala U, Karreth FA, Bosia C, Pagnani A, Taulli R, Leopold V, et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. PNAS. 2013;110:7154–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tay Y, Karreth FA, Pandolfi PP. Aberrant ceRNA activity drives lung cancer. Cell Res. 2014;24:259–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nishikura K. Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol. 2006;7:919–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Maas S. Posttranscriptional recoding by RNA editing. Adv Protein Chem Struct Biol. 2012;86:193–224.

    Article  CAS  PubMed  Google Scholar 

  46. Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Klump KE, McGinnis JF. The role of reactive oxygen species in ocular malignancy. Adv Exp Med Biol. 2014;801:655–9.

    Article  PubMed  Google Scholar 

  49. Cardiff RD. Epithelial to mesenchymal transition tumors: fallacious or snail’s pace? Clin Cancer Res. 2005;11(24 Pt 1):8534–7.

    Article  CAS  PubMed  Google Scholar 

  50. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastas- Rev. 2016;35:645–54.

    Article  Google Scholar 

  51. Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastas- Rev. 2018;37:5–15.

    Article  CAS  Google Scholar 

  52. Fu L, Chen Q, Yao T, Li T, Ying S, Hu Y, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget. 2017;8:43878–88.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, et al. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 2018;119:440–6.

    Article  CAS  PubMed  Google Scholar 

  54. Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS ONE. 2016;11:e0158347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Tang W, Ji M, He G, Yang L, Niu Z, Jian M, et al. Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. OncoTargets Ther. 2017;10:2045–56.

    Article  CAS  Google Scholar 

  56. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13:871–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L, et al. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 2017;403:305–17.

    Article  CAS  PubMed  Google Scholar 

  58. Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway. J Hematol Oncol. 2017;10:52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Granados-Riveron JT, Aquino-Jarquin G. Does the linear Sry transcript function as a ceRNA for miR-138? The sense of antisense. F1000Research. 2014;3:90.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Wang Q, Tang H, Yin S, Dong C. Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep. 2013;29:2046–52.

    Article  CAS  PubMed  Google Scholar 

  61. Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatol. 2012;55:1863–75.

    Article  CAS  Google Scholar 

  62. Guo H, Deng H, Cui H, Peng X, Fang J, Zuo Z, et al. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-kappaB pathway and reduction of anti-inflammatory mediator expression in the kidney. Oncotarget. 2015;6:28607–20.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Man SM, Kanneganti TD. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol. 2016;16:7–21.

    Article  CAS  PubMed  Google Scholar 

  64. Jin H, Jin X, Zhang H, Wang W. Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget. 2017;8:25571–81.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  66. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev cell. 2011;21:92–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kim M, Jung JY, Choi S, Lee H, Morales LD, Koh JT, et al. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy. 2017;13:149–68.

    Article  CAS  PubMed  Google Scholar 

  68. Tang YY, Zhao P, Zou TN, Duan JJ, Zhi R, Yang SY, et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA cell Biol. 2017;36:901–8.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8:61687–97.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 2017;77:2339–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C, et al. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun. 2018;495:189–96.

    Article  CAS  PubMed  Google Scholar 

  72. He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin cancer Res: CR. 2017;36:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim MH, Kim HB, Acharya S, Sohn HM, Jun JY, Chang IY, et al. Ape1/Ref-1 induces glial cell-derived neurotropic factor (GDNF) responsiveness by upregulating GDNF receptor alpha1 expression. Mol Cell Biol. 2009;29:2264–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Xia W, Qiu M, Chen R, Wang S, Leng X, Wang J, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep. 2016;6:35576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 2016;6:30919.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Canavese M, Santo L, Raje N. Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol Ther. 2012;13:451–7.

    Article  CAS  PubMed  Google Scholar 

  77. Peyressatre M, Prevel C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers. 2015;7:179–237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Bian D, Wu Y, Song G. Novel circular RNA, hsa_circ_0025039 promotes cell growth, invasion and glucose metabolism in malignant melanoma via the miR-198/CDK4 axis. Biomed Pharmacother. 2018;108:165–76.

    Article  CAS  PubMed  Google Scholar 

  79. Zeng HF, Yan S, Wu SF. MicroRNA-153-3p suppress cell proliferation and invasion by targeting SNAI1 in melanoma. Biochem Biophys Res Commun. 2017;487:140–5.

    Article  CAS  PubMed  Google Scholar 

  80. Qi J, Li T, Bian H, Li F, Ju Y, Gao S, et al. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 2016;6:326–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Luan W, Li L, Shi Y, Bu X, Xia Y, Wang J, et al. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget. 2016;7:63901–12.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Luan W, Shi Y, Zhou Z, Xia Y, Wang J. circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochem Biophys Res Commun. 2018;502:22–29.

    Article  CAS  PubMed  Google Scholar 

  83. Wang Q, Chen J, Wang A, Sun L, Qian L, Zhou X, et al. Differentially expressed circRNAs in melanocytes and melanoma cells and their effect on cell proliferation and invasion. Oncol Rep. 2018;39:1813–24.

    CAS  PubMed  Google Scholar 

  84. Karczewski J, Dobrowolska A, Rychlewska-Hanczewska A, Adamski Z. New insights into the role of T cells in pathogenesis of psoriasis and psoriatic arthritis. Autoimmunity. 2016;49:435–50.

    Article  CAS  PubMed  Google Scholar 

  85. Qiao M, Ding J, Yan J, Li R, Jiao J, Sun Q. Circular RNA expression profile and analysis of their potential function in psoriasis. Cell Physiol Biochem. 2018;50:15–27.

    Article  CAS  PubMed  Google Scholar 

  86. Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu, et al. The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther. 2017;25:2062–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhu Z, Ding J, Shankowsky HA, Tredget EE. The molecular mechanism of hypertrophic scar. J Cell Commun Signal. 2013;7:239–52.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Butzelaar L, Soykan EA, Galindo Garre F, Beelen RH, Ulrich MM, Niessen FB, et al. Going into surgery: risk factors for hypertrophic scarring. Wound Repair Regen. 2015;23:531–7.

    Article  PubMed  Google Scholar 

  89. Curran TA, Ghahary A. Evidence of a role for fibrocyte and keratinocyte-like cells in the formation of hypertrophic scars. J Burn Care Res. 2013;34:227–31.

    Article  PubMed  Google Scholar 

  90. Arnvig KB, Cortes T, Young DB. Noncoding RNA in Mycobacteria. Microbiol Spect. 2014;2. https://doi.org/10.1128/microbiolspec.MGM2-0029-2013.

  91. Chen L, Li J, Li Q, Yan H, Zhou B, Gao Y, et al. Non-coding RNAs: the new insight on hypertrophic scar. J Cell Biochem. 2017;118:1965–8.

    Article  CAS  PubMed  Google Scholar 

  92. Li M, Wang J, Liu D, Huang H. Highthroughput sequencing reveals differentially expressed lncRNAs and circRNAs, and their associated functional network, in human hypertrophic scars. Mol Med Rep. 2018;18:5669–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatol. 2017;66:1151–64.

    Article  CAS  Google Scholar 

  94. Chen G, Shi Y, Liu M, Sun J. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 2018;9:175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Li MF, Li YH, He YH, Wang Q, Zhang Y, Li XF, et al. Emerging roles of hsa_circ_0005075 targeting miR-431 in the progress of HCC. Biomed Pharmacother. 2018;99:848–58.

    Article  CAS  PubMed  Google Scholar 

  96. He Z, Ruan X, Liu X, Zheng J, Liu Y, Liu L, et al. FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in Glioma. J Exp Clin Cancer Res: CR. 2019;38:65.

    Article  PubMed  PubMed Central  Google Scholar 

  97. He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu L, et al. MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J Exp Clin Cancer Res: CR. 2019;38:9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang L, Peng X, Lu X, Wei Q, Chen M, Liu L. Inhibition of hsa_circ_0001313 (circCCDC66) induction enhances the radio-sensitivity of colon cancer cells via tumor suppressor miR-338-3p: effects of cicr_0001313 on colon cancer radio-sensitivity. Pathol Res Pract. 2019;215:689–96.

    Article  CAS  PubMed  Google Scholar 

  99. Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ. Circular RNA-ITCH suppresses lung cancer proliferation via Inhibiting the Wnt/beta-Catenin Pathway. Biomed Res Int. 2016;2016:1579490.

    PubMed Central  PubMed  Google Scholar 

  100. Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284:2170–82.

    Article  CAS  PubMed  Google Scholar 

  101. Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;388:208–19.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18:20.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Yang X, Li Y, Liu Y, Xu X, Wang Y, Yan Y, et al. Novel circular RNA expression profile of uveal melanoma revealed by microarray. Chin J Cancer Res. 2018;30:656–68.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Ju H, Zhang L, Mao L, Liu S, Xia W, Hu J, et al. Altered expression pattern of circular RNAs in metastatic oral mucosal melanoma. Am J Cancer Res. 2018;8:1788–1800.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Zhang L, Li Y, Liu W, Li H, Zhu Z. Analysis of the complex interaction of CDR1as-miRNA-protein and detection of its novel role in melanoma. Oncol Lett. 2018;16:1219–25.

    PubMed Central  PubMed  Google Scholar 

  106. Sarkar D, Oghabian A, Bodiyabadu PK, Joseph WR, Leung EY, Finlay GJ, et al. Multiple isoforms of ANRIL in melanoma cells: structural complexity suggests variations in processing. Int J Mol Sci. 2017;18:E1378.

    Article  CAS  PubMed  Google Scholar 

  107. Sand M, Bechara FG, Gambichler T, Sand D, Bromba M, Hahn SA, et al. Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci. 2016;83:210–8.

    Article  CAS  PubMed  Google Scholar 

  108. Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al. Circular RNA expression in basal cell carcinoma. Epigenomics. 2016;8:619–32.

    Article  CAS  PubMed  Google Scholar 

  109. Li J, Li Q, Chen L, Gao Y, Li J. Expression profile of circular RNAs in infantile hemangioma detected by RNA-Seq. Medicine. 2018;97:e10882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Xiao T, Xue J, Shi M, Chen C, Luo F, Xu H, et al. Circ008913, via miR-889 regulation of DAB2IP/ZEB1, is involved in the arsenite-induced acquisition of CSC-like properties by human keratinocytes in carcinogenesis. Met: Integr Biometal Sci. 2018;10:1328–38.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Gheibi Hayat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abi, A., Farahani, N., Molavi, G. et al. Circular RNAs: epigenetic regulators in cancerous and noncancerous skin diseases. Cancer Gene Ther 27, 280–293 (2020). https://doi.org/10.1038/s41417-019-0130-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0130-x

This article is cited by

Search

Quick links