Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downregulation of miR-152 contributes to DNMT1-mediated silencing of SOCS3/SHP-1 in non-Hodgkin lymphoma

Abstract

Understanding the molecular mechanisms for the development of non-Hodgkin lymphoma (NHL) will improve our ability to cure the patients. qRT-PCR was applied for the examination of the efficiency of shRNA for DNMT1, the expression of suppressor genes, miRNA-152. The MTT analysis, cell cycle analysis, clonal formation, and apoptotic analysis were used to examine the functions of DNMT1 and miR-152 in lymphoma cells. Methylation-specific polymerase chain reaction (MSP) was used to examine the methylation of tumor suppressor genes. The dual luciferase assay and western blot were used to validate if DNMT1 is the target of miR-152. For the in vivo experiments, the lymphoma cells were injected into the nude mice for quantification of the tumor growth after transfection of miR-152 mimics. Knockdown of DNMT1 by shRNA (sh-DNMT1) in OCI-Ly10 and Granta-159 cells significantly upregulated the expression of tumor suppressor genes (SOCS3, BCL2L10, p16, p14, and SHP-1) via decreasing their methylation level. At the cellular level, we found sh-DNMT1 inhibited the proliferation, clonal formation and cell cycle progression and induced the cell apoptosis of lymphoma cells. Furthermore, we found miR-152 can downregulates the expression of DNMT1 via directly targeting the gene. Overexpression of miR-152 also increased the expression of tumor suppressor genes SOCS3 and SHP-1. And miR-152 also can inhibit the cell proliferation and induce the cell apoptosis. Moreover, we found overexpression of miR-152 significantly repressed the tumor growth with decreased DNMT1 expression and increased expression of tumor suppressor genes in vivo. Our study demonstrates that miR-152 can inhibit lymphoma growth via suppressing DNMT1-mediated silencing of SOCS3 and SHP-1. These data demonstrate a new mechanism for the development of NHL and this may provide a new therapeutic target for NHL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet. 2012;380:848–57.

    Article  Google Scholar 

  2. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390:298–310.

    Article  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  4. Wilson WH, Jung SH, Porcu P, Hurd D, Johnson J, et al. A Cancer and Leukemia Group B multi-center study of DA-EPOCH-rituximab in untreated diffuse large B-cell lymphoma with analysis of outcome by molecular subtype. Haematologica. 2012;97:758–65.

    Article  CAS  Google Scholar 

  5. Otto SP, Walbot V. DNA methylation in eukaryotes: kinetics of demethylation and de novo methylation during the life cycle. Genetics. 1990;124:429–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Amara K, Ziadi S, Hachana M, Soltani N, Korbi S, et al. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 2010;101:1722–30.

    Article  CAS  Google Scholar 

  7. Bogdanovic O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 2009;118:549–65.

    Article  CAS  Google Scholar 

  8. Wang X, Li B. DNMT1 regulates human endometrial carcinoma cell proliferation. Onco Targets Ther. 2017;10:1865–73.

    Article  CAS  Google Scholar 

  9. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  Google Scholar 

  10. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.

    Article  CAS  Google Scholar 

  11. Alkebsi L, Handa H, Sasaki Y, Osaki Y, Yanagisawa K, et al. DNMT3B7 expression related to MENT expression and its promoter methylation in human lymphomas. Leuk Res. 2013;37:1662–7.

    Article  CAS  Google Scholar 

  12. Pradhan S, Talbot D, Sha M, Benner J, Hornstra L, et al. Baculovirus-mediated expression and characterization of the full-length murine DNA methyltransferase. Nucleic Acids Res. 1997;25:4666–73.

    Article  CAS  Google Scholar 

  13. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20:3139–55.

    Article  CAS  Google Scholar 

  14. Suzuki M, Sunaga N, Shames DS, Toyooka S, Gazdar AF, et al. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res. 2004;64:3137–43.

    Article  CAS  Google Scholar 

  15. Sengupta D, Deb M, Rath SK, Kar S, Parbin S, et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res. 2016;346:176–87.

    Article  CAS  Google Scholar 

  16. Li Y, Liu X, Guo X, Liu X, Luo J. DNA methyltransferase 1 mediated aberrant methylation and silencing of SHP-1 gene in chronic myelogenous leukemia cells. Leuk Res. 2017;58:9–13.

    Article  Google Scholar 

  17. Capello D, Gloghini A, Baldanzi G, Martini M, Deambrogi C, Lucioni M, et al. Alterations of negative regulators of cytokine signalling in immunodeficiency-related non-Hodgkin lymphoma. Hematol Oncol. 2013;31:22–8.

    Article  CAS  Google Scholar 

  18. Koyama M, Oka T, Ouchida M, Nakatani Y, Nishiuchi R, Yoshino T, et al. Activated proliferation of B-cell lymphomas/leukemias with the SHP1 gene silencing by aberrant CpG methylation. Lab Invest. 2003;83:1849–58.

    Article  CAS  Google Scholar 

  19. Takino H, Li C, Hu S, Kuo TT, Geissinger E, Muller-Hermelink HK, et al. Primary cutaneous marginal zone B-cell lymphoma: a molecular and clinicopathological study of cases from Asia, Germany, and the United States. Mod Pathol. 2008;21:1517–26.

    Article  CAS  Google Scholar 

  20. Fabiani E, Leone G, Giachelia M, D’alo’ F, Greco M, Criscuolo M, et al. Analysis of genome-wide methylation and gene expression induced by 5-aza-2’-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leuk Lymphoma. 2010;51:2275–84.

    Article  CAS  Google Scholar 

  21. Boosani CS, Dhar K, Agrawal DK. Down-regulation of hsa-miR-1264 contributes to DNMT1-mediated silencing of SOCS3. Mol Biol Rep. 2015;42:1365–76.

    Article  CAS  Google Scholar 

  22. Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA. 2005;102:6948–53.

    Article  CAS  Google Scholar 

  23. Burri N, Shaw P, Bouzourene H, Sordat I, Sordat B, Gillet M, et al. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab Invest. 2001;81:217–29.

    Article  CAS  Google Scholar 

  24. Zhou W, Chen H, Hong X, Niu X, Lu Q. Knockdown of DNA methyltransferase-1 inhibits proliferation and derepresses tumor suppressor genes in myeloma cells. Oncol Lett. 2014;8:2130–4.

    Article  CAS  Google Scholar 

  25. Maduri S. Applicability of RNA interference in cancer therapy: current status. Indian J Cancer. 2015;52:11–21.

    Article  CAS  Google Scholar 

  26. Seo JH, Jeong ES, Choi YK. Therapeutic effects of lentivirus-mediated shRNA targeting of cyclin D1 in human gastric cancer. BMC Cancer. 2014;14:175.

    Article  Google Scholar 

  27. Grimm D, Kay MA. RNAi and gene therapy: a mutual attraction. Hematol Am Soc Hematol Educ Progr. 2007;1:473-81.

    Article  Google Scholar 

  28. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  Google Scholar 

  29. Chen J, Odenike O, Rowley JD. Leukaemogenesis: more than mutant genes. Nat Rev Cancer. 2010;10:23–36.

    Article  CAS  Google Scholar 

  30. Wang YS, Chou WW, Chen KC, Cheng HY, Lin RT, Juo SH. MicroRNA-152 mediates DNMT1-regulated DNA methylation in the estrogen receptor alpha gene. PLoS One. 2012;7:e30635.

    Article  CAS  Google Scholar 

  31. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122:23–36.

    Article  CAS  Google Scholar 

  32. Rothe M, Modlich U, Schambach A. Biosafety challenges for use of lentiviral vectors in gene therapy. Curr Gene Ther. 2013;13:453–68.

    Article  CAS  Google Scholar 

  33. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Müeller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32:3048–58.

    Article  Google Scholar 

  34. Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature. 2005;435:745–6.

    Article  CAS  Google Scholar 

  35. Jang JY, Choi Y, Jeon YK, Kim CW. Suppression of adenine nucleotide translocase-2 by vector-based siRNA in human breast cancer cells induces apoptosis and inhibits tumor growth in vitro and in vivo. Breast Cancer Res. 2008;10:R11.

    Article  Google Scholar 

  36. Li M, Zhang Y, Bharadwaj U, Zhai QJ, Ahern CH, Fisher WE, et al. Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts. Clin Cancer Res. 2009;15:5993–6001.

    Article  CAS  Google Scholar 

  37. Tummalapalli P, Gondi CS, Dinh DH, Gujrati M, Rao JS. RNA interference-mediated targeting of urokinase plasminogen activator receptor and matrix metalloproteinase-9 gene expression in the IOMM-lee malignant meningioma cell line inhibits tumor growth, tumor cell invasion and angiogenesis. Int J Oncol. 2007;31:5–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997;15:871–5.

    Article  CAS  Google Scholar 

  39. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell. 2006;124:1283–98.

    Article  CAS  Google Scholar 

  40. Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6:686–95.

    Article  CAS  Google Scholar 

  41. Scaggiante B, Dapas B, Farra R, Grassi M, Pozzato G, Giansante C, et al. Improving siRNA bio-distribution and minimizing side effects. Curr Drug Metab. 2011;12:11–23.

    Article  CAS  Google Scholar 

  42. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–7.

    Article  CAS  Google Scholar 

  43. Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41.

    Article  CAS  Google Scholar 

  44. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–803.

    Article  CAS  Google Scholar 

  45. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4:e6816.

    Article  Google Scholar 

  46. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5:3–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Ming Wang or Yi Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QM., Lian, GY., Song, Y. et al. Downregulation of miR-152 contributes to DNMT1-mediated silencing of SOCS3/SHP-1 in non-Hodgkin lymphoma. Cancer Gene Ther 26, 195–207 (2019). https://doi.org/10.1038/s41417-018-0057-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0057-7

This article is cited by

Search

Quick links