Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

SIRT1 is an actionable target to restore p53 function in HPV-associated cancer therapy

Abstract

Background

Our aim was to evaluate the efficacy and anti-cancer action of a precision medicine approach involving a novel SIRT1-dependent pathway that, when disrupted, leads to the restoration of a functional p53 in human papillomavirus (HPV)-transformed cells.

Methods

The anticancer potential of inhibiting SIRT1 was evaluated by examining the effects of the specific SIRT1 inhibitor EX527 (also known as Selisistat) or genetic silencing, either individually or in conjunction with standard chemotherapeutic agents, on a range of HPV+ cancer cells and a preclinical mouse model of HPV16-induced cancer.

Results

We show that SIRT1 inhibition restores a transcriptionally active K382-acetylated p53 in HPV+ but not HPV- cell lines, which in turn promotes G0/G1 cell cycle arrest and inhibits clonogenicity specifically in HPV+ cells. Additionally, EX527 treatment increases the sensitivity of HPV+ cells to sublethal doses of standard genotoxic agents. The enhanced sensitivity to cisplatin as well as p53 restoration were also observed in an in vivo tumorigenicity assay using syngeneic C3.43 cells harbouring an integrated HPV16 genome, injected subcutaneously into C57BL/6J mice.

Conclusions

Our findings uncover an essential role of SIRT1 in HPV-driven oncogenesis, which may have direct translational implications for the treatment of this type of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SIRT1 gene expression and status in HPV+ vs HPV- head and neck squamous cell carcinoma (HNSCC).
Fig. 2: Pharmacological and genetic inhibition of SIRT1 activity restores Ac-p53 (K382) protein expression.
Fig. 3: Restoration of a functional Ac-p53 (K382) inhibits the growth of HPV+ cells.
Fig. 4: SIRT1 inhibition enhances the sensitivity of HPV+ cells to genotoxic agents.
Fig. 5: EX527 enhances cisplatin cytotoxic activity in an in vivo syngeneic mouse model of HPV16-induced cancer.
Fig. 6: Schematic model depicting the molecular circuitry governing p53 functions via SIRT1-mediated acetylation in HPV+ cells.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included either in this article or in additional files, and the links to public datasets are reported in the manuscript.

References

  1. Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: one cause, two diseases. Cancer. 2017;123:2219–29.

    Article  PubMed  Google Scholar 

  2. Lechner M, Liu J, Masterson L, Fenton TR. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol. 2022;19:306–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shewale JB, Gillison ML. Dynamic factors affecting HPV-attributable fraction for head and neck cancers. Curr Opin Virol. 2019;39:33–40.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6:92.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guo T, Kang SY, Cohen EEW. Current perspectives on recurrent HPV-mediated oropharyngeal cancer. Front Oncol. 2022;12:966899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chow LQM. Head and neck cancer. N Engl J Med. 2020;382:60–72.

    Article  CAS  PubMed  Google Scholar 

  7. Caudell JJ, Gillison ML, Maghami E, Spencer S, Pfister DG, Adkins D, et al. NCCN guidelines® insights: head and neck cancers, version 1.2022. J Natl Compr Canc Netw. 2022;20:224–34.

    Article  PubMed  Google Scholar 

  8. Harari PM. Open the gates for treatment de-intensification in head and neck cancer. J Clin Oncol. 2019;37:1854–55.

    Article  PubMed  Google Scholar 

  9. Bates JE, Steuer CE. HPV as a Carcinomic Driver in head and neck cancer: a de-escalated future? Curr Treat Options Oncol. 2022;23:325–32.

    Article  PubMed  Google Scholar 

  10. Orlandi E, Licitra L. Personalized medicine and the contradictions and limits of first-generation deescalation trials in patients with human papillomavirus-positive oropharyngeal cancer. JAMA Otolaryngol Head Neck Surg. 2018;144:99–100.

    Article  PubMed  Google Scholar 

  11. McBride AA. Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol. 2022;20:95–108.

    Article  CAS  PubMed  Google Scholar 

  12. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30:F55–70.

    Article  CAS  PubMed  Google Scholar 

  13. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60.

    Article  CAS  PubMed  Google Scholar 

  14. Mittal S, Banks L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat Res Rev Mutat Res. 2017;772:23–35.

    Article  CAS  PubMed  Google Scholar 

  15. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 2018;26:158–68.

    Article  CAS  PubMed  Google Scholar 

  16. Hebner C, Beglin M, Laimins LA. Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation. J Virol. 2007;81:12740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu TF, McCall CE. Deacetylation by SIRT1 reprograms inflammation and cancer. Genes Cancer. 2013;4:135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin Z, Fang D. The Roles of SIRT1 in Cancer. Genes Cancer. 2013;4:s97–104.

    Article  Google Scholar 

  19. Kwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci. 2008;33:517–25.

    Article  CAS  PubMed  Google Scholar 

  20. Gomes AR, Yong JS, Kiew KC, Aydin E, Khongkow M, Laohasinnarong S, et al. Sirtuin1 (SIRT1) in the acetylation of downstream target proteins. Methods Mol Biol. 2016;1436:169–88.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Kraus WL. SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signalling to the control of cellular functions. Biochim Biophys Acta. 2010;1804:1666–75.

    Article  CAS  PubMed  Google Scholar 

  22. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.

    Article  CAS  PubMed  Google Scholar 

  23. Lee JT, Gu W. SIRT1: regulator of p53 deacetylation. Genes Cancer. 2013;4:112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Langsfeld ES, Bodily JM, Laimins LA. The deacetylase Sirtuin 1 regulates human papillomavirus replication by modulating histone acetylation and recruitment of DNA damage factors NBS1 and Rad51 to viral genomes. PLoS Pathog. 2015;11:e1005181.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Das D, Smith N, Wang X, Morgan IM. The deacetylase SIRT1 regulates the replication properties of human papillomavirus 16 E1 and E2. J Virol. 2017;91:e00102–17.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Velez-Perez A, Wang XI, Li M, Zhang S. SIRT1 overexpression in cervical squamous intraepithelial lesions and invasive squamous cell carcinoma. Hum Pathol. 2017;59:102–7.

    Article  CAS  PubMed  Google Scholar 

  27. So D, Shin HW, Kim J, Lee M, Myeong J, Chun YS, et al. Cervical cancer is addicted to SIRT1 disarming the AIM2 antiviral defense. Oncogene. 2018;37:5191–204.

    Article  CAS  PubMed  Google Scholar 

  28. Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006;26:28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yi J, Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta. 2010;1804:1684–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Atkins KM, Thomas LL, Barroso-González J, Thomas L, Auclair S, Yin J, et al. The multifunctional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell-cycle arrest. Cell Rep. 2014;8:1545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell. 2001;8:1243–54.

    Article  CAS  PubMed  Google Scholar 

  32. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008;133:612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Talis AL, Huibregtse JM, Howley PM. The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem. 1998;273:6439–45.

    Article  CAS  PubMed  Google Scholar 

  34. Feltkamp MCW, Smits HL, Vierboom MPM, Minnaar RP, de Jongh BM, Drijfhout JW, et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. J. Immunol. 1993;23:2242–9.

    CAS  Google Scholar 

  35. Smith KA, Meisenburg BL, Tam VL, Pagarian RR, Wong R, Joea DK, et al. Lymph node targeted immunotherapy mediates potent immunity resulting in regression of isolated or disseminated HPV transformed tumors. Clin Cancer Res. 2009;15:6167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Accardi L, Paolini F, Mandarino A, Percario Z, Di Bonito P, Di Carlo V, et al. In vivo antitumor effect of an intracellular single-chain antibody fragment against the E7 oncoprotein of human papillomavirus 16. Int J Cancer. 2014;134:2742–7.

    Article  CAS  PubMed  Google Scholar 

  37. Yang R, Klimentová J, Göckel-Krzikalla E, Ly R, Gmelin N, Hotz-Wagenblatt A, et al. Combined transcriptome and proteome analysis of immortalized human keratinocytes expressing human papillomavirus 16 (HPV16) oncogenes reveals novel key factors and networks in HPV induced carcinogenesis. mSphere. 2019;4:e00129–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lo Cigno I, Calati F, Borgogna C, Zevini A, Albertini S, Martuscelli L, et al. Human papillomavirus E7 oncoprotein subverts host innate immunity via SUV39H1-mediated epigenetic silencing of immune sensor genes. J Virol. 2020;94:e01812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lo Cigno I, De Andrea M, Borgogna C, Albertini S, Landini MM, Peretti A, et al. The nuclear DNA sensor IFI16 acts as a restriction factor for human papillomavirus replication through epigenetic modifications of the viral promoters. J Virol. 2015;89:7506–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, et al. Rapid and automated tetrazolium-based colourimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988;20:309–21.

    Article  CAS  PubMed  Google Scholar 

  41. Itahana K, Itahana Y, Dimri GP. Colourimetric detection of senescence-associated β galactosidase. Methods Mol Biol. 2013;965:143–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  Google Scholar 

  43. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci USA. 2013;110:E2772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meissner JD. Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines. J Gen Virol. 1999;80:1725–33.

    Article  CAS  PubMed  Google Scholar 

  45. Abdulkarim B, Sabri S, Deutsch E, Chagraoui H, Maggiorella L, Thierry J, et al. Antiviral agent Cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene. 2002;21:2334–46.

    Article  CAS  PubMed  Google Scholar 

  46. Ninck S, Reisser C, Dyckhoff G, Helmke B, Bauer H, Herold-Mende C. Expression profiles of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int J Cancer. 2003;106:34–44.

    Article  CAS  PubMed  Google Scholar 

  47. Scheffner M, Münger K, Byrne JC, Howley PM. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA. 1991;88:5523–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Srivastava S, Tong YA, Devadas K, Zou ZQ, Chen Y, Pirollo KF, et al. The status of the p53 gene in human papilloma virus positive or negative cervical carcinoma cell lines. Carcinogenesis. 1992;13:1273–5.

    Article  CAS  PubMed  Google Scholar 

  49. Piboonniyom SO, Duensing S, Swilling NW, Hasskarl J, Hinds PW, Münger K. Abrogation of the retinoblastoma tumour suppressor checkpoint during keratinocyte immortalization is not sufficient for induction of centrosome-mediated genomic instability. Cancer Res. 2003;63:476–83.

    CAS  PubMed  Google Scholar 

  50. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004;16:93–105.

    Article  CAS  PubMed  Google Scholar 

  51. Hall AH, Alexander KA. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol. 2003;77:6066–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olthof NC, Huebbers CU, Kolligs J, Henfling M, Ramaekers FC, Cornet I, et al. Viral load, gene expression and mapping of viral integration sites in HPV16-associated HNSCC cell lines. Int J Cancer. 2015;136:E207–18.

    Article  CAS  PubMed  Google Scholar 

  53. Rose PG. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;341:708.

    Article  Google Scholar 

  54. Dell’Omo G, Crescenti D, Vantaggiato C, Parravicini C, Borroni AP, Rizzi N, et al. Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs. Br J Cancer. 2019;120:537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kong X, Yu D, Wang Z, Li S. Relationship between p53 status and the bioeffect of ionizing radiation. Oncol Lett. 2021;22:661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Marcello Arsura for critically reviewing the manuscript. NOKE6/E7 cells were kindly provided by Martina Niebler and Frank Rösl, German Cancer Research Center (DKFZ)-Heidelberg and C3.43 cells by Martin Kast, University of Southern California in Los Angeles. We are also grateful to Michela Salvo from the Histology Research Core Facility at University of Piemonte Orientale (Novara, Italy) for technical support in tissue processing and histological analysis, Nausicaa Clemente from the Department of Health Sciences at University of Piemonte Orientale (Novara, Italy) for technical support to perform in vivo experiments, and Valeria Caneparo at CAAD, Center for Translational Research and Autoimmune and Allergic Disease, for assistance in SA-β-gal analysis.

Funding

This work was supported by the Italian Ministry for University and Research-MIUR (20178ALPCM-PRIN 2017 to MG), the AGING Project–Department of Excellence–DIMET, University of Piemonte Orientale, Associazione Italiana per la Ricerca sul Cancro-AIRC (25767-IG 2021 to MG), Next Generation EU—PNRR M6C2—Investimento 2.1 Valorizzazione e potenziamento della ricerca biomedica del SSN (PNRR-MAD-2022-12376570 to MG), and by the Italian Ministry of Foreign Affairs and International Cooperation (PGRBR22GR03 to AV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ILC: Conceptualisation, data curation, investigation, methodology, project administration, software, validation, writing–original draft. FC: Conceptualisation, data curation, investigation, methodology, writing–original draft. CG: Data curation, investigation, methodology. CB: Formal analysis, project administration, supervision, writing–review and editing. AV: Resources, validation, writing–review and editing. RB: Investigation, validation, writing–review and editing. MG: Conceptualisation, supervision, funding acquisition, writing–original draft, writing–review and editing.

Corresponding author

Correspondence to Marisa Gariglio.

Ethics declarations

Competing interests

ILC, FC and MG report the Italian Patent No. 102020000023281 issued on October 2nd, 2020 (“SIRT1 INHIBITOR OR ANTAGONIST FOR USE IN PREVENTING AND/OR TREATING AN HPV-INDUCED TUMOUR”). This patent is pending for the international patent application approval (PCT/IB2021/059055). All the other authors declare no competing financial interests.

Ethics approval

The mice used for the in vivo tumorigenicity assays were housed in our animal facilities in accordance with “The Guide for the Care and Use of Laboratory Animals”, and the experimentation was approved by the Italian Ministry of Health (Agreement No. 219/2020-PR).

Consent for publication

This manuscript has not been previously published and is not under consideration for publication elsewhere.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Cigno, I., Calati, F., Girone, C. et al. SIRT1 is an actionable target to restore p53 function in HPV-associated cancer therapy. Br J Cancer 129, 1863–1874 (2023). https://doi.org/10.1038/s41416-023-02465-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02465-x

Search

Quick links