Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial intelligence applications in prostate cancer

Abstract

Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Presentation to clinical action flow in prostate cancer and AI potential.
Fig. 2: Classes of AI algorithms and their main applications in PCa.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel L, Torre A, Ahmedin D. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Glob Cancer Stat. 2018;68:394–424.

    Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  3. Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. 2022;10:811044.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walz J, Graefen M, Chun FK, Erbersdobler A, Haese A, Steuber T, et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol. 2006;50:498–505.

    Article  PubMed  Google Scholar 

  5. Fuchsjäger M, Shukla-Dave A, Akin O, Barentsz J, Hricak H. Prostate cancer imaging. Acta Radiol. 2008;49:107–20.

    Article  PubMed  Google Scholar 

  6. Farolfi A, Calderoni L, Mattana F, Mei R, Telo S, Fanti S, et al. Current and emerging clinical applications of PSMA PET diagnostic imaging for prostate cancer. J Nucl Med. 2021;62:596–604.

    Article  CAS  PubMed  Google Scholar 

  7. Stabile A, Dell’Oglio P, Gandaglia G, Fossati N, Brembilla G, Cristel G, et al. Not all multiparametric magnetic resonance imaging–targeted biopsies are equal: the impact of the type of approach and operator expertise on the detection of clinically significant prostate cancer. European Urology. Oncology. 2018;1:120–8.

    Google Scholar 

  8. Cackowski FC, Mahal B, Heath EI, Carthon B. Evolution of disparities in prostate cancer treatment: is this a new normal? Am Soc Clin Oncol Educ Book. 2021;41:e203–e14.

    Article  Google Scholar 

  9. Spratt DE, Zhang J, Santiago-Jiménez M, Dess RT, Davis JW, Den RB, et al. Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J Clin Oncol. 2018;36:581.

    Article  PubMed  Google Scholar 

  10. Shariat SF, Karakiewicz PI, Suardi N, Kattan MW. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res. 2008;14:4400–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kim HL, Li P, Huang H-C, Deheshi S, Marti T, Knudsen B, et al. Validation of the Decipher Test for predicting adverse pathology in candidates for prostate cancer active surveillance. Prostate Cancer Prostatic Dis. 2019;22:399–405.

    Article  PubMed  Google Scholar 

  12. Reese AC, Pierorazio PM, Han M, Partin AW. Contemporary evaluation of the National Comprehensive Cancer Network prostate cancer risk classification system. Urology. 2012;80:1075–9.

    Article  PubMed  Google Scholar 

  13. Terada N, Akamatsu S, Kobayashi T, Inoue T, Ogawa O, Antonarakis ES. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther Adv Med Oncol. 2017;9:565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spratt DE, Sun Y, Van der Wal D, Huang S-C, Mohamad O, Armstrong AJ, et al. An AI-derived digital pathology-based biomarker to predict the benefit of androgen deprivation therapy in localized prostate cancer with validation in NRG/RTOG 9408. Am Soc Clin Oncol. 2022. https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.6_suppl.223.

  15. Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. JAMA 2017;317:2532–42.

    Article  PubMed  Google Scholar 

  16. Schaeffer EM, Srinivas S, Adra N, An Y, Barocas D, Bitting R, et al. NCCN Guidelines® insights: prostate cancer, version 1.2023: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2022;20:1288–98.

    Google Scholar 

  17. Veloso SG, Lima MF, Salles PG, Berenstein CK, Scalon JD, Bambirra EA. Interobserver agreement of Gleason score and modified Gleason score in needle biopsy and in surgical specimen of prostate cancer. Int Braz J Urol. 2007;33:639–51.

    Article  PubMed  Google Scholar 

  18. Brimo F, Epstein JI. Immunohistochemical pitfalls in prostate pathology. Hum Pathol. 2012;43:313–24.

    Article  CAS  PubMed  Google Scholar 

  19. Kweldam CF, van der Kwast T, van Leenders GJ. On cribriform prostate cancer. Transl Androl Urol. 2018;7:145–54.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ross AE, D’Amico AV, Freedland SJ. Which, when and why? Rational use of tissue-based molecular testing in localized prostate cancer. Prostate Cancer Prostatic Dis. 2016;19:1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ma MW, Gao XS, Lyu F, Gu XB, Yin H, Li HZ, et al. Development of a nomogram predicting metastatic disease and the assessment of NCCN, AUA and EAU guideline recommendations for bone imaging in prostate cancer patients. World J Urol. 2021;39:1815–23.

    Article  PubMed  Google Scholar 

  22. Dall’Era MA, Maddala T, Polychronopoulos L, Gallagher JR, Febbo PG, Denes BS. Utility of the Oncotype DX® prostate cancer assay in clinical practice for treatment selection in men newly diagnosed with prostate cancer: a retrospective chart review analysis. Urol Pract. 2015;2:343–8.

    Article  PubMed  Google Scholar 

  23. Bostrom PJ, Bjartell AS, Catto JW, Eggener SE, Lilja H, Loeb S, et al. Genomic predictors of outcome in prostate cancer. Eur Urol. 2015;68:1033–44.

    Article  CAS  PubMed  Google Scholar 

  24. Kornberg Z, Cooperberg MR, Spratt DE, Feng FY. Genomic biomarkers in prostate cancer. Transl Androl Urol. 2018;7:459–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koenig IR, Fuchs O, Hansen G, von Mutius E, Kopp MV. What is precision medicine? Eur Res J. 2017;50:1700391.

    Article  Google Scholar 

  26. Roychowdhury S, Chinnaiyan AM. Advancing precision medicine for prostate cancer through genomics. J Clin Oncol. 2013;31:1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Copeland J (ed). The Essential Turing: the ideas that gave birth to the computer age. Oxford: Clarendon Press; 2004. p. viii+613. Br J Hist Sci 2006;39:470–1.

  28. Fetzer JH. What is Artificial Intelligence? Artificial Intelligence: Its Scope and Limits: Springer, 1990. p. 3–27.

  29. Ongsulee P, editor Artificial intelligence, machine learning and deep learning. 2017 15th international conference on ICT and knowledge engineering (ICT&KE); 2017: IEEE.

  30. Singh A, Thakur N, Sharma A, editors. A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom); 2016: IEEE.

  31. Avanzo M, Wei L, Stancanello J, Vallieres M, Rao A, Morin O, et al. Machine and deep learning methods for radiomics. Med Phys. 2020;47:e185–e202.

    Article  PubMed  Google Scholar 

  32. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.

  34. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. Commun Acm 2020;63:139–44.

    Article  Google Scholar 

  35. Baydoun A, Xu K, Heo JU, Yang H, Zhou F, Bethell LA, et al. Synthetic CT generation of the pelvis in patients with cervical cancer: a single input approach using generative adversarial network. IEEE Access. 2021;9:17208–21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ronneberger O, Fischer P, Brox T, editors. Dental X-ray image segmentation using a U-shaped Deep Convolutional network. International Symposium on Biomedical Imaging; 2015.

  37. Carbonneau M-A, Cheplygina V, Granger E, Gagnon G. Multiple instance learning: a survey of problem characteristics and applications. Pattern Recognit. 2018;77:329–53.

    Article  ADS  Google Scholar 

  38. Salcedo-Sanz S, Rojo-Álvarez JL, Martínez-Ramón M, Camps-Valls G. Support vector machines in engineering: an overview. Wiley Interdiscip Rev Data Min Knowl Discov. 2014;4:234–67.

    Article  Google Scholar 

  39. Liang F, Qian P, Su KH, Baydoun A, Leisser A, Van Hedent S, et al. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach. Artif Intell Med. 2018;90:34–41.

    Article  PubMed  Google Scholar 

  40. Huang F, Xie G, Xiao R. Research on Ensemble Learning. In 2009 International Conference on Artificial Intelligence and Computational Intelligence. IEEE; 2009. vol. 3, pp. 249–52.

  41. Rigatti SJ. Random forest. J Insur Med. 2017;47:31–9.

    Article  PubMed  Google Scholar 

  42. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25:1301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raciti P, Sue J, Ceballos R, Godrich R, Kunz JD, Kapur S, et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod Pathol. 2020;33:2058–66.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Perincheri S, Levi AW, Celli R, Gershkovich P, Rimm D, Morrow JS, et al. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Mod Pathol. 2021;34:1588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ström P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 2020;21:222–32.

    Article  PubMed  Google Scholar 

  46. Mun Y, Paik I, Shin S-J, Kwak T-Y, Chang H. Yet another automated Gleason grading system (YAAGGS) by weakly supervised deep learning. npj Digital Med. 2021;4:1–9.

    Article  Google Scholar 

  47. Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 2020;21:233–41.

    Article  PubMed  Google Scholar 

  48. Pantanowitz L, Quiroga-Garza GM, Bien L, Heled R, Laifenfeld D, Linhart C, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet Digital Health. 2020;2:e407–e16.

    Article  PubMed  Google Scholar 

  49. Nagpal K, Foote D, Tan F, Liu Y, Chen PC, Steiner DF, et al. Development and validation of a deep learning algorithm for gleason grading of prostate cancer from biopsy specimens. JAMA Oncol. 2020;6:1372–80.

    Article  PubMed  Google Scholar 

  50. Bulten W, Kartasalo K, Chen PC, Strom P, Pinckaers H, Nagpal K, et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat Med. 2022;28:154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cifci D, Foersch S, Kather JN. Artificial intelligence to identify genetic alterations in conventional histopathology. J Pathol. 2022;257:430–44.

    Article  PubMed  Google Scholar 

  52. Schaumberg AJ, Rubin MA, Fuchs TJ. H&E-stained whole slide image deep learning predicts SPOP mutation state in prostate cancer. BioRxiv. 2018:064279.

  53. Wang Z, Wang Y, Zhang J, Hu Q, Zhi F, Zhang S, et al. Significance of the TMPRSS2: ERG gene fusion in prostate cancer. Mol Med Rep. 2017;16:5450–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dadhania V, Gonzalez D, Yousif M, Cheng J, Morgan TM, Spratt DE, et al. Leveraging artificial intelligence to predict ERG gene fusion status in prostate cancer. BMC Cancer. 2022;22:494.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Leo P, Chandramouli S, Farre X, Elliott R, Janowczyk A, Bera K, et al. Computationally derived cribriform area index from prostate cancer hematoxylin and eosin images is associated with biochemical recurrence following radical prostatectomy and is most prognostic in gleason grade group 2. Eur Urol Focus. 2021;7:722–32.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Esteva A, Feng J, van der Wal D, Huang SC, Simko JP, DeVries S, et al. Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials. NPJ Digit Med. 2022;5:71.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hinata N, Fujisawa M. Racial differences in prostate cancer characteristics and cancer-specific mortality: an overview. World J Mens Health. 2022;40:217–27.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bhargava HK, Leo P, Elliott R, Janowczyk A, Whitney J, Gupta S, et al. Computationally derived image signature of stromal morphology is prognostic of prostate cancer recurrence following prostatectomy in African American PatientsStroma Predicts Prostate Cancer Outcome in African Americans. Clin Cancer Res. 2020;26:1915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roach M, Zhang J, Esteva A, Mohamad O, Van der Wal D, Simko J, et al. Prostate cancer risk in African American men evaluated via digital histopathology multi-modal deep learning models developed on NRG Oncology phase III clinical trials. Am Soc Clin Oncol. 2022. https://ascopubs.org/doi/pdf/10.1200/JCO.2022.40.16_suppl.108?role=tab.

  60. Suarez-Ibarrola R, Sigle A, Eklund M, Eberli D, Miernik A, Benndorf M, et al. Artificial intelligence in magnetic resonance imaging-based prostate cancer diagnosis: where do we stand in 2021? Eur Urol Focus. 2022;8:409–17.

    Article  PubMed  Google Scholar 

  61. Turkbey B, Haider MA. Deep learning-based artificial intelligence applications in prostate MRI: brief summary. Br J Radio. 2022;95:20210563.

    Article  Google Scholar 

  62. Jiang KW, Song Y, Hou Y, Zhi R, Zhang J, Bao ML, et al. Performance of artificial intelligence-aided diagnosis system for clinically significant prostate cancer with MRI: a diagnostic comparison study. J Magn Reson Imaging. 2023;57:1352–64.

  63. Baydoun A, Xu K, Bethell LA, Zhou F, Heo JU, Zhao K, et al. Auto-contouring FDG-PET/MR images for cervical cancer radiation therapy: An intelligent sequential approach using focally trained, shallow U-Nets. Intell Based Medicine 2021;5:100026.

    Article  Google Scholar 

  64. Hiremath A, Shiradkar R, Fu P, Mahran A, Rastinehad AR, Tewari A, et al. An integrated nomogram combining deep learning, Prostate Imaging-Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study. Lancet Digit Health. 2021;3:e445–e54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Algohary A, Shiradkar R, Pahwa S, Purysko A, Verma S, Moses D, et al. Combination of peri-tumoral and intra-tumoral radiomic features on Bi-Parametric MRI accurately stratifies prostate cancer risk: a multi-site study. Cancers (Basel). 2020;12:2200.

    Article  PubMed  Google Scholar 

  66. Li L, Shiradkar R, Leo P, Algohary A, Fu P, Tirumani SH, et al. A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI. EBioMedicine. 2021;63:103163.

    Article  CAS  PubMed  Google Scholar 

  67. Shiradkar R, Ghose S, Jambor I, Taimen P, Ettala O, Purysko AS, et al. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings. J Magn Reson Imaging. 2018;48:1626–36.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mitterberger M, Horninger W, Aigner F, Pinggera GM, Steppan I, Rehder P, et al. Ultrasound of the prostate. Cancer Imaging. 2010;10:40.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lei Y, Tian S, He X, Wang T, Wang B, Patel P, et al. Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net. Med Phys. 2019;46:3194–206.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhu N, Najafi M, Han B, Hancock S, Hristov D. Feasibility of image registration for ultrasound-guided prostate radiotherapy based on similarity measurement by a convolutional neural network. Technol cancer Res Treat. 2019;18:1533033818821964.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Guo H, Kruger M, Xu S, Wood BJ, Yan P. Deep adaptive registration of multi-modal prostate images. Comput Med Imaging Graph. 2020;84:101769.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chiu PK-F, Shen X, Wang G, Ho C-L, Leung C-H, Ng C-F, et al. Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study. Prostate Cancer Prostatic Dis. 2022;25:672–6.

    Article  PubMed  Google Scholar 

  73. Wang K, Chen P, Feng B, Tu J, Hu Z, Zhang M, et al. Machine learning prediction of prostate cancer from transrectal ultrasound video clips. Front Oncol. 2022;12:948662.

    Article  PubMed  PubMed Central  Google Scholar 

  74. El Naqa I. Prospective clinical deployment of machine learning in radiation oncology. Nat Rev Clin Oncol. 2021;18:605–6.

    Article  PubMed  Google Scholar 

  75. Laskar SG, Sinha S, Krishnatry R, Grau C, Mehta M, Agarwal JP. Access to radiation therapy: from local to global and equality to equity. JCO Glob Oncol. 2022;8:e2100358.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Agazaryan N, Chow P, Lamb J, Cao M, Raldow A, Beron P, et al. The timeliness initiative: continuous process improvement for prompt initiation of radiation therapy treatment. Adv Radiat Oncol. 2020;5:1014–21.

    Article  PubMed  PubMed Central  Google Scholar 

  77. McIntosh C, Conroy L, Tjong MC, Craig T, Bayley A, Catton C, et al. Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nat Med. 2021;27:999–1005.

    Article  CAS  PubMed  Google Scholar 

  78. Field M, Hardcastle N, Jameson M, Aherne N, Holloway L. Machine learning applications in radiation oncology. Phys Imaging Radiat Oncol. 2021;19:13–24.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Largent A, Barateau A, Nunes JC, Mylona E, Castelli J, Lafond C, et al. Comparison of deep learning-based and patch-based methods for Pseudo-CT generation in MRI-based prostate dose planning. Int J Radiat Oncol Biol Phys. 2019;105:1137–50.

    Article  PubMed  Google Scholar 

  80. Isola P, Zhu J-Y, Zhou T, Efros AA, editors. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

  81. Cusumano D, Lenkowicz J, Votta C, Boldrini L, Placidi L, Catucci F, et al. A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiother Oncol. 2020;153:205–12.

    Article  CAS  PubMed  Google Scholar 

  82. Fu J, Yang Y, Singhrao K, Ruan D, Chu FI, Low DA, et al. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Med Phys. 2019;46:3788–98.

    Article  PubMed  Google Scholar 

  83. Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018;63:185001.

    Article  PubMed  Google Scholar 

  84. Hsu SH, Han Z, Leeman JE, Hu YH, Mak RH, Sudhyadhom A. Synthetic CT generation for MRI-guided adaptive radiotherapy in prostate cancer. Front Oncol. 2022;12:969463.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Brouwer CL, Dinkla AM, Vandewinckele L, Crijns W, Claessens M, Verellen D, et al. Machine learning applications in radiation oncology: current use and needs to support clinical implementation. Phys Imaging Radiat Oncol. 2020;16:144–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Duan J, Bernard M, Downes L, Willows B, Feng X, Mourad WF, et al. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process. Med Phys. 2022;49:2570–81.

    Article  PubMed  Google Scholar 

  87. Liu C, Gardner SJ, Wen N, Elshaikh MA, Siddiqui F, Movsas B, et al. Automatic segmentation of the prostate on CT images using deep neural networks (DNN). Int J Radiat Oncol Biol Phys. 2019;104:924–32.

    Article  PubMed  Google Scholar 

  88. Ma L, Guo R, Zhang G, Tade F, Schuster DM, Nieh P, et al. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion. Proc SPIE Int Soc Opt Eng. 2017;10133:1013320.

    Google Scholar 

  89. Jimenez-Pastor A, Lopez-Gonzalez R, Fos-Guarinos B, Garcia-Castro F, Wittenberg M, Torregrosa-Andrés A, et al. Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks. Eur Radiol. 2023:1–10. https://doi.org/10.1007/s00330-023-09410-9.

  90. Wortel G, Eekhout D, Lamers E, van der Bel R, Kiers K, Wiersma T, et al. Characterization of automatic treatment planning approaches in radiotherapy. Phys Imaging Radiat Oncol. 2021;19:60–5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nawa K, Haga A, Nomoto A, Sarmiento RA, Shiraishi K, Yamashita H, et al. Evaluation of a commercial automatic treatment planning system for prostate cancers. Med Dosim. 2017;42:203–9.

    Article  PubMed  Google Scholar 

  92. Cilla S, Romano C, Morabito VE, Macchia G, Buwenge M, Dinapoli N, et al. Personalized treatment planning automation in prostate cancer radiation oncology: a comprehensive dosimetric study. Front Oncol. 2021;11:636529.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cilla S, Ianiro A, Romano C, Deodato F, Macchia G, Buwenge M, et al. Template-based automation of treatment planning in advanced radiotherapy: a comprehensive dosimetric and clinical evaluation. Sci Rep. 2020;10:423.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  94. Tillman-Schwartz E, Tillman G, Tansky J, Paly J, Efstathiou J, Wang Y. Prospective analysis of a deep learning auto-contouring model for definitive radiation of localized prostate cancer. Int J Radiat Oncol Biol Phys. 2022;114:e105–e6.

    Article  Google Scholar 

  95. Bhattacharya T, Brettin T, Doroshow JH, Evrard YA, Greenspan EJ, Gryshuk AL, et al. AI meets exascale computing: advancing cancer research with large-scale high performance computing. Front Oncol. 2019;9:984.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6:94.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hines PA, Herold R, Pinheiro L, Frias Z. Artificial intelligence in European medicines regulation. Nat Rev Drug Discovery. 2023;22:81–2.

  98. Harvey HB, Gowda V. How the FDA regulates AI. Acad Radiol. 2020;27:58–61.

    Article  PubMed  Google Scholar 

  99. Sankaran S, Zhang C, Aarts H, Markopoulos P. Exploring peoples’ perception of autonomy and reactance in everyday AI interactions. Front Psychol. 2021;12:713074.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank UH Seidman Cancer Center and generous philanthropy from patients. Figures 1 and 2 were done using biorender.com

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AB and DES. Writing: AB and DES. Reviewing & Editing: AB, AYJ, NGZ, RK, SR, JS, RAV, LKB, RZ, AP, THA, and DES. All authors approved the final version of the paper.

Corresponding author

Correspondence to Daniel E. Spratt.

Ethics declarations

Competing interests

AB: None. AYJ: Personal Fees from Myovant. NGZ: Support by the National Institutes of Health Grant LRP 1 L30 CA231572-01 (2018-2022) and by the American Cancer Society – Tri State CEOs Against Cancer Clinician Scientist Development Grant, CSDG-20-013-01-CCE (2020-). Remuneration from Springer Nature for his textbook, Absolute Clinical Radiation Oncology Review (2019). Remuneration from the American College of Radiation Oncology for chart review and accreditation of radiation oncology facilities nationally (2020-). RK: None. SR: Personal speaking fees from Seagen. JS: Grant support from BMS Foundation, Damon Runyon Cancer Research Foundation. Key opinon leader for Fortec Medical. RAV: None. LKB: None. RZ: None. AP: Honoraria with both ViewRay and SunNuclear. THA: None. DES: Personal fees from AstraZeneca, Blue Earth, Bayer, Boston Scientific, Janssen, Novartis, Myovant, Pfizer, Varian, Elekta, Gamma Tile.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baydoun, A., Jia, A.Y., Zaorsky, N.G. et al. Artificial intelligence applications in prostate cancer. Prostate Cancer Prostatic Dis 27, 37–45 (2024). https://doi.org/10.1038/s41391-023-00684-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-023-00684-0

This article is cited by

Search

Quick links