Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flotillin-1 palmitoylation is essential for its stability and subsequent tumor promoting capabilities

Abstract

Flotillin-1 contributes to invasion and metastasis in triple negative breast cancer (TNBC) and is modified post-translationally through palmitoylation. Palmitoylation, the process of conjugating palmitoyl-CoA to proteins, plays an essential role in protein stability and trafficking. Thus far, there has not been any investigation into the role of flotillin-1 palmitoylation in the context of metastasis in vivo. To address the role of flotillin-1 palmitoylation in metastasis, MDA-MB-231 cells expressing palmitoylation defective flotillin-1 constructs were used as models. Compared to flotillin-1 WT expressing tumors, flotillin-1 palmitoylation defective displayed abrogated tumor progression and lung metastasis in vivo in both spontaneous and experimental models. Further mechanistic investigation led to the identification of zDHHC5 as the main palmitoyl acyltransferase responsible for palmitoylating endogenous flotillin-1. Modulation of flotillin-1 palmitoylation status through mutagenesis, zDHHC5 silencing, and 2-bromopalmitate inhibition all resulted in the proteasomal degradation of flotillin-1 protein. To assess if flotillin-1 palmitoylation can be inhibited for potential clinical relevance, we designed a competitive peptide fused to a cell penetrating peptide sequence, which displayed efficacy in blocking flotillin-1 palmitoylation in vitro without altering palmitoylation of other zDHHC5 substrates, highlighting its specificity. Additionally, TNBC xenograft tumor models expressing a doxycycline inducible flotillin-1 palmitoylation inhibiting peptide displayed attenuated tumor growth and lung metastasis. Collectively, these results reveal a novel palmitoylation dependent mechanism which is essential for the stability of flotillin-1 protein. More specifically, disruption of flotillin-1 palmitoylation through mutagenesis or competitive peptide promoted flotillin-1 protein degradation, subsequently impeding its tumor promoting and metastasis-inducing effects in TNBC tumor models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Palmitoylation-defective flotillin-1 displays altered stability and localization in TNBC cell lines.
Fig. 2: zDHHC5 contributes to the stability of endogenous flotillin-1 by preventing its proteasomal degradation.
Fig. 3: Flotillin-1 palmitoylation defective TNBC cells display attenuated tumor growth and lung metastasis.
Fig. 4: Targeting flotillin-1 palmitoylation with a competitive peptide attenuates tumor growth and lung metastasis.

Similar content being viewed by others

References

  1. Desantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69:438–51.

    Article  PubMed  Google Scholar 

  2. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179–90.

    Article  CAS  PubMed  Google Scholar 

  3. Amaddii M, Meister M, Banning A, Tomasovic A, Mooz J, Rajalingam K, et al. Flotillin-1/reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. J Biol Chem. 2012;287:7265–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koh M, Yong HY, Kim ES, Son H, Jeon YR, Hwang JS, et al. A novel role for flotillin‐1 in H‐R as‐regulated breast cancer aggressiveness. Int J Cancer. 2016;138:1232–45.

    Article  CAS  PubMed  Google Scholar 

  5. Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, Hancock JF, et al. Flotillin-1/Reggie-2 traffics to surface raft domains via a novel golgi-independent pathway: identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem. 2002;277:48834–41.

    Article  CAS  PubMed  Google Scholar 

  6. Genest M, Comunale F, Rios-Morris E, Planchon D, Govindin P, Vacher S, et al. Flotillin-upregulation acts as an epithelial-mesenchymal transition driver by promoting sphingosine kinase 2-dependent AXL stabilization. bioRxiv. 2020. https://www.biorxiv.org/content/10.1101/2020.05.12.090571v1.

  7. Planchon D, Morris ER, Genest M, Comunale F, Vacher S, Bièche I, et al. MT1-MMP targeting to endolysosomes is mediated by upregulation of flotillins. J Cell Sci. 2018;131:jcs218925.

    Article  PubMed  Google Scholar 

  8. Ou Y, Liu F, Chen F, Zhu Z. Prognostic value of Flotillin-1 expression in patients with solid tumors. Oncotarget. 2017;8:52665–77.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li Z, Yang Y, Gao Y, Wu X, Yang X, Zhu Y, et al. Elevated expression of flotillin-1 is associated with lymph node metastasis and poor prognosis in early-stage cervical cancer. Am J Cancer Res. 2016;6:38.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang P-F, Zeng G-Q, Hu R, Li C, Yi H, Li M-Y, et al. Identification of flotillin-1 as a novel biomarker for lymph node metastasis and prognosis of lung adenocarcinoma by quantitative plasma membrane proteome analysis. J Proteom. 2012;77:202–14.

    Article  CAS  Google Scholar 

  11. Cao S, Cui Y, Xiao H, Mai M, Wang C, Xie S, et al. Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF-β signaling in nasopharyngeal carcinoma. Oncotarget. 2016;7:4252.

    Article  PubMed  Google Scholar 

  12. Dam DHM, Jelsma SA, Yu JM, Liu H, Kong B, Paller AS. Flotillin and AP2A1/2 promote IGF-1 receptor association with clathrin and internalization in primary human keratinocytes. J Invest Dermatol. 2020;140:1743–52.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jang D, Kwon H, Choi M, Lee J, Pak Y. Sumoylation of Flotillin-1 promotes EMT in metastatic prostate cancer by suppressing Snail degradation. Oncogene. 2019;38:3248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riento K, Frick M, Schafer I, Nichols BJ. Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. J Cell Sci. 2009;122:912–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Lu H, Fang C, Xu J. Palmitoylation as a signal for delivery. Singapore: Springer; 2020. p. 399–424.

  16. Coleman DT, Gray AL, Kridel SJ, Cardelli JA. Palmitoylation regulates the intracellular trafficking and stability of c-Met. Oncotarget. 2016;7:32664.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ernst AM, Syed SA, Zaki O, Bottanelli F, Zheng H, Hacke M, et al. S-palmitoylation sorts membrane cargo for anterograde transport in the golgi. Dev Cell. 2018;47:479–93.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berger T, Ueda T, Arpaia E, Chio I, Shirdel E, Jurisica I, et al. Flotillin-2 deficiency leads to reduced lung metastases in a mouse breast cancer model. Oncogene. 2013;32:4989–94.

    Article  CAS  PubMed  Google Scholar 

  19. Ludwig A, Otto GP, Riento K, Hams E, Fallon PG, Nichols BJ. Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol. 2010;191:771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 2007;17:1151–6.

    Article  CAS  PubMed  Google Scholar 

  21. Langhorst MF, Solis GP, Hannbeck S, Plattner H, Stuermer CA. Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. Febs Lett. 2007;581:4697–703.

    Article  CAS  PubMed  Google Scholar 

  22. Babuke T, Ruonala M, Meister M, Amaddii M, Genzler C, Esposito A, et al. Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal. 2009;21:1287–97.

    Article  CAS  PubMed  Google Scholar 

  23. Kong C, Lange JJ, Samovski D, Su X, Liu J, Sundaresan S, et al. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation. Biochem Biophys Res Commun. 2013;434:388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL, et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 2019;29:83–6.

    Article  PubMed  Google Scholar 

  25. Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3:306–17.

    Article  CAS  PubMed  Google Scholar 

  26. Abrami L, Kunz B, Iacovache I, Van Der Goot FG. Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proc Natl Acad Sci USA. 2008;105:5384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Martin BR, Cravatt BF, Hofmann SL. DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells. J Biol Chem. 2012;287:523–30.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Niu W, Fan X, Yang H, Zhao C, Fan J, et al. Oct4A palmitoylation modulates tumorigenicity and stemness in human glioblastoma cells. Neuro Oncol. 2022;25:82–96.

    Article  PubMed Central  Google Scholar 

  29. Chen X, Ma H, Wang Z, Zhang S, Yang H, Fang Z. EZH2 palmitoylation mediated by ZDHHC5 in p53-mutant glioma drives malignant development and progression. Cancer Res. 2017;77:4998–5010.

    Article  CAS  PubMed  Google Scholar 

  30. Taftaf R, Liu X, Singh S, Jia Y, Dashzeveg NK, Hoffmann AD, et al. ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nat Commun. 2021;12:4867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Niu J, Sun Y, Chen B, Zheng B, Jarugumilli GK, Walker SR, et al. Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation through S-palmitoylation. Nature. 2019;573:139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurrikoff K, Langel Ü. Recent CPP-based applications in medicine. Expert Opin Drug Deliv. 2019;16:1183–91.

    Article  CAS  PubMed  Google Scholar 

  34. Kwon H, Choi M, Ahn Y, Jang D, Pak Y. Flotillin-1 palmitoylation turnover by APT-1 and ZDHHC-19 promotes cervical cancer progression by suppressing IGF-1 receptor desensitization and proteostasis. Cancer Gene Ther. 2023;30:302–12.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Zhang S, He H, Luo H, Xia Y, Jiang Y, et al. Repositioning Lomitapide to block ZDHHC5-dependant palmitoylation on SSTR5 leads to anti-proliferation effect in preclinical pancreatic cancer models. Cell Death Discov. 2023;9:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin CC, Lo MC, Moody RR, Stevers NO, Tinsley SL, Sun D. Doxycycline targets aldehyde dehydrogenase-positive breast cancer stem cells. Oncol Rep. 2018;39:3041–7.

    CAS  PubMed  Google Scholar 

  37. Adler J, Parmryd I. Colocalization analysis in fluorescence microscopy. Cell Imaging Tech Methods Protoc. 2013;931:97–109.

    Article  CAS  Google Scholar 

  38. Wegleiter T, Buthey K, Gonzalez-Bohorquez D, Hruzova M, Bin Imtiaz MK, Abegg A, et al. Palmitoylation of BMPR1a regulates neural stem cell fate. Proc Natl Acad Sci. 2019;116:25688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA. SARTools: a DESeq2-and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One. 2016;11:e0157022.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blighe K, Rana S, Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. 2018. https://github.com/kevinblighe.EnhancedVolcano2018.

  41. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinforma. 2009;10:1–7.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Brittany Harlow for offering her support during data collection as well as the UT Austin flow cytometry core for their support with the FACS experimentation.

Funding

University of Texas Vice President of Research Creative Grant.

Author information

Authors and Affiliations

Authors

Contributions

BM designed and performed all experiments unless stated otherwise and wrote the manuscript, CW assisted in animal experiments and edited the manuscript, AB edited the manuscript and provided supervision, CJ edited the manuscript and provided supervision, LD edited the manuscript, provided supervision, and acquired funding for the study.

Corresponding author

Correspondence to Linda deGraffenried.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClellan, B., Wilson, C.N., Brenner, A.J. et al. Flotillin-1 palmitoylation is essential for its stability and subsequent tumor promoting capabilities. Oncogene 43, 1063–1074 (2024). https://doi.org/10.1038/s41388-024-02946-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02946-0

Search

Quick links