Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of super-enhancer-driven TAL1 expression by KLF4 in T-cell acute lymphoblastic leukemia

Abstract

TAL1 is one of the most frequently dysregulated genes in T-ALL and is overexpressed in about 50% of T-ALL cases. One of the molecular mechanisms of TAL1 overexpression is abnormal mutations in the upstream region of the TAL1 promoter that introduce binding motifs for the MYB transcription factor. MYB binding at this location creates a 5’ TAL1 super-enhancer (SE), which leads to aberrant expression of TAL1 and is associated with unfavorable clinical outcomes. Although targeting TAL1 is considered to be an attractive therapeutic strategy for patients with T-ALL, direct inhibition of transcription factors is challenging. Here, we show that KLF4, a known tumor suppressor in leukemic cells, suppresses SE-driven TAL1 expression in T-ALL cells. Mechanistically, KLF4 downregulates MYB expression by directly binding to its promoter and inhibits the formation of 5’ TAL1 SE. In addition, we found that APTO-253, a small molecule inducer of KLF4, exerts an anti-leukemic effect by targeting SE-driven TAL1 expression in T-ALL cells. Taken together, our results suggest that the induction of KLF4 is a promising strategy to control TAL1 expression and could be a novel treatment for T-ALL patients with a poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KLF4 inhibited the proliferation of TAL1-positive T-ALL cells.
Fig. 2: KLF4 suppressed TAL1 expression in 5’ TAL1 SE-positive T-ALL cell lines.
Fig. 3: KLF4 directly downregulated MYB expression in T-ALL cells.
Fig. 4: TAL1 and MYB were expressed in a mutually-dependent manner and co-operatively supported the growth of 5’ TAL1 SE-positive T-ALL cells.
Fig. 5: APTO-253 inhibited the growth of T-ALL cells via inhibition of the MYB-TAL1 regulatory circuit.
Fig. 6: Antitumor activity of APTO-253 in a Jurkat T-ALL xenograft model.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol. 2008;8:380–90.

    Article  CAS  PubMed  Google Scholar 

  2. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16:494–507.

    Article  CAS  PubMed  Google Scholar 

  3. Look AT. Oncogenic transcription factors in the human acute leukemias. Science. 1997;278:1059–64.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346:1373–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanda T, Leong WZ. TAL1 as a master oncogenic transcription factor in T-cell acute lymphoblastic leukemia. Exp Hematol. 2017;53:7–15.

    Article  CAS  PubMed  Google Scholar 

  7. Berg T. Inhibition of transcription factors with small organic molecules. Curr Opin Chem Biol. 2008;12:464–71.

    Article  CAS  PubMed  Google Scholar 

  8. Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7:1074–82.

    Article  CAS  PubMed  Google Scholar 

  9. Morita K, Masamoto Y, Kataoka K, Koya J, Kagoya Y, Yashiroda H, et al. BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and KLF4. Leukemia. 2015;29:2248–56.

    Article  CAS  PubMed  Google Scholar 

  10. Noura M, Morita K, Kiyose H, Matsuo H, Nishinaka-Arai Y, Kurokawa M, et al. Pivotal role of DPYSL2A in KLF4-mediated monocytic differentiation of acute myeloid leukemia cells. Sci Rep. 2020;10:20245.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Noura M, Morita K, Kiyose H, Okuno Y, Matsuo H, Koyama A, et al. Albendazole induces the terminal differentiation of acute myeloid leukaemia cells to monocytes by stimulating the Krüppel-like factor 4-dihydropyrimidinase-like 2A (KLF4-DPYSL2A) axis. Br J Haematol. 2021;194:598–603.

    Article  CAS  PubMed  Google Scholar 

  12. Guan H, Xie L, Leithäuser F, Flossbach L, Möller P, Wirth T, et al. KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood. 2010;116:1469–78.

    Article  CAS  PubMed  Google Scholar 

  13. Shen Y, Park CS, Suppipat K, Mistretta TA, Puppi M, Horton TM, et al. Inactivation of KLF4 promotes T-cell acute lymphoblastic leukemia and activates the MAP2K7 pathway. Leukemia. 2017;31:1314–24.

    Article  CAS  PubMed  Google Scholar 

  14. Yasunaga J, Taniguchi Y, Nosaka K, Yoshida M, Satou Y, Sakai T, et al. Identification of aberrantly methylated genes in association with adult T-cell leukemia. Cancer Res. 2004;64:6002–9.

    Article  CAS  PubMed  Google Scholar 

  15. Li W, Jiang Z, Li T, Wei X, Zheng Y, Wu D, et al. Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol Cancer. 2015;14:26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bagger FO, Kinalis S, Rapin N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 2019;47:D881–D885.

    Article  CAS  PubMed  Google Scholar 

  17. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G, et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990;9:3343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janssen JW, Ludwig WD, Sterry W, Bartram CR. SIL-TAL1 deletion in T-cell acute lymphoblastic leukemia. Leukemia. 1993;7:1204–10.

    CAS  PubMed  Google Scholar 

  19. Bieker JJ. Krüppel-like factors: three fingers in many pies. J Biol Chem. 2001;276:34355–8.

    Article  CAS  PubMed  Google Scholar 

  20. Aksoy I, Giudice V, Delahaye E, Wianny F, Aubry M, Mure M, et al. Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun. 2014;5:3719.

    Article  PubMed  ADS  Google Scholar 

  21. Kulakovskiy IV, Medvedeva YA, Schaefer U, Kasianov AS, Vorontsov IE, Bajic VB, et al. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res. 2013;41:D195–202.

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, et al. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia. 2017;31:2057–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huesca M, Lock LS, Khine AA, Viau S, Peralta R, Cukier IH, et al. A novel small molecule with potent anticancer activity inhibits cell growth by modulating intracellular labile zinc homeostasis. Mol Cancer Ther. 2009;8:2586–96.

    Article  CAS  PubMed  Google Scholar 

  24. Local A, Zhang H, Benbatoul KD, Folger P, Sheng X, Tsai CY, et al. APTO-253 stabilizes G-quadruplex DNA, inhibits MYC expression, and induces DNA damage in acute myeloid leukemia cells. Mol Cancer Ther. 2018;17:1177–86.

    Article  CAS  PubMed  Google Scholar 

  25. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA, et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood. 2007;110:1251–61.

    Article  CAS  PubMed  Google Scholar 

  26. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F, et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet. 2007;39:593–5.

    Article  CAS  PubMed  Google Scholar 

  27. O’Neil J, Tchinda J, Gutierrez A, Moreau L, Maser RS, Wong KK, et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J Exp Med. 2007;204:3059–66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cercek A, Wheler J, Murray PE, Zhou S, Saltz L. Phase 1 study of APTO-253 HCl, an inducer of KLF4, in patients with advanced or metastatic solid tumors. Invest N Drugs. 2015;33:1086–92.

    Article  CAS  Google Scholar 

  29. Ohanian M, Arellano ML, Levy MY, O’Dwyer K, Babiker H, Mahadevan D, et al. A phase 1a/b dose escalation study of the MYC repressor Apto-253 in patients with relapsed or refractory AML or high-risk MDS. Blood. 2021;138:3411–3411.

    Article  Google Scholar 

  30. Smith C, Touzart A, Simonin M, Tran-Quang C, Hypolite G, Latiri M, et al. Harnessing the MYB-dependent TAL1 5' super-enhancer for targeted therapy in T-ALL. Mol Cancer. 2023;22:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41:D991–995.

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul. 1984;22:27–55.

    Article  CAS  Google Scholar 

  35. Odaira K, Yasuda T, Okada K, Shimooka T, Kojima Y, Noura M, et al. Functional inhibition of MEF2 by C/EBP is a possible mechanism of leukemia development by CEBP-IGH fusion gene. Cancer Sci. 2023;114:781–92.

    Article  CAS  PubMed  Google Scholar 

  36. Matsuo H, Nakatani K, Harata Y, Higashitani M, Ito Y, Inagami A, et al. Efficacy of a combination therapy targeting CDK4/6 and autophagy in a mouse xenograft model of t(8;21) acute myeloid leukemia. Biochem Biophys Rep. 2021;27:101099.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 21K19505 and 22H03102 (to FH) and 23K15298 (to MN); and Grants for Practical Research for Innovative Cancer Control Grant Numbers JP21ck0106607 (to FH) from the Japan Agency for Medical Research and Development (AMED). We sincerely thank all for their support.

Author information

Authors and Affiliations

Authors

Contributions

MN initiated the study, designed and performed the experiments, analyzed the data, and wrote the manuscript. HM performed the in vivo experiments. All others supervised the research and approved the final manuscript for submission.

Corresponding author

Correspondence to Mina Noura.

Ethics declarations

Competing interests

HK has received research funds from FUJIFILM, Kyowa Hakko Kirin, Otsuka, Perseus Proteomics, Daiichi Sankyo, AbbVie, CURED, Astellas Pharma, Bristol-Myers Squibb; and scholarship funds from Zenyaku Kogyo, Nippon Shinyaku, Chugai, Astellas Pharma, Kyowa Hakko Kirin, Takeda, Sumitomo Dainippon Pharma, Sanofi, Eisai, and Ono; and honoraria from AbbVie, Chugai, Astellas Pharma, and Novartis. All other authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noura, M., Matsuo, H., Yasuda, T. et al. Suppression of super-enhancer-driven TAL1 expression by KLF4 in T-cell acute lymphoblastic leukemia. Oncogene 43, 447–456 (2024). https://doi.org/10.1038/s41388-023-02913-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02913-1

Search

Quick links