Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation

Abstract

N6-methyladenosine (m6A) RNA methylation contributes to the cancer stem cell (CSC) phenotype through regulating gene expression. YTHDF2, an m6A reader, was shown to be associated with hepatocellular carcinoma (HCC) patient prognosis. However, the effect of YTHDF2 on liver CSC and cancer metastasis and the molecular mechanism of this effect have not been documented. Here, we show that YTHDF2 expression is negatively correlated with HCC patient survival in both data from the Cancer Genome Atlas (TCGA) database and clinical data from our center. By detecting CD133+ cells and carrying out sphere culture assays, we found that knockdown of YTHDF2 led to impaired stemness in Hep3B and Huh7 cells. In contrast, overexpression of YTHDF2 increased the CSC phenotype. Mechanistically, the knockdown and overexpression of YTHDF2 in liver cancer cells resulted in decreased and increased m6A levels in the 5′-untranslated region (UTR) of OCT4 mRNA, respectively, leading to decreased and increased OCT4 protein expression, respectively. A luciferase activity assay showed that mutation of the corresponding m6A methylation sequence in the 5′-UTR of OCT4 mRNA caused significantly decreased gene expression, suggesting a role for YTHDF2-dependent m6A methylation in protein translation. Polysome profiling results also indicated the knockdown and overexpression of YTHDF2 could decrease and increase OCT4 translation, respectively. In particular, overexpression of OCT4 rescued the impaired stemness caused by YTHDF2 depletion, which confirmed the effect of YTHDF2 on CSC phenotype is dependent on OCT4. In vivo, the loss of YTHDF2 reduced tumor burden and inhibited lung metastasis following orthotopic transplantation in nude mice. Last, we demonstrated that YTHDF2 expression is positively correlated with OCT4 expression and m6A levels in the 5′-UTR of OCT4 mRNA in clinical HCC specimens. In conclusion, YTHDF2 promotes the CSC liver phenotype and cancer metastasis by modulating the m6A methylation of OCT4 mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: YTHDF2 expression is associated with patients’ survival.
Fig. 2: YTHDF2 is required for liver cancer stem cell phenotype.
Fig. 3: Loss of YTHDF2 decreases OCT4 protein level but not mRNA level.
Fig. 4: YTHDF2 is required for OCT4 mRNA m6A methylation and protein translation.
Fig. 5: Polysome profiling identifies the effect of YTHDF2 on OCT4 translation.
Fig. 6: YTHDF2 overexpression promotes liver cancer stem cell phenotype.
Fig. 7: Knockdown of YTHDF2 decreases tumor burden in orthotopic liver tumors and inhibits lung metastasis.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. Villanueva A, Hernandez-Gea V, Llovet JM. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat Rev Gastroenterol Hepatol. 2013;10:34–42.

    Article  CAS  Google Scholar 

  3. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450–62.

    Article  CAS  Google Scholar 

  4. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–38.

    Article  CAS  Google Scholar 

  5. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet. 2014;15:293–306.

    Article  CAS  Google Scholar 

  6. Cao G, Li HB, Yin Z, Flavell RA. Recent advances in dynamic m6A RNA modification. Open Biol. 2016;6:160003.

    Article  Google Scholar 

  7. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 2015;526:591–4.

    Article  CAS  Google Scholar 

  8. Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S, et al. MicroRNA-145 modulates N(6)-methyladenosine levels by targeting the 3′-untranslated mRNA region of the N(6)-methyladenosine binding YTH domain family 2 protein. J Biol Chem. 2017;292:3614–23.

    Article  CAS  Google Scholar 

  9. Zhu P, Wang Y, He L, Huang G, Du Y, Zhang G, et al. ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J Clin Investig. 2015;125:3795–808.

    Article  Google Scholar 

  10. Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han W, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 2015;16:289–301.

    Article  CAS  Google Scholar 

  11. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I. et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:e2047–56.

    Article  CAS  Google Scholar 

  12. Zhao BS, Nachtergaele S, Roundtree IA, He C. Our views of dynamic N(6)-methyladenosine RNA methylation. RNA. 2018;24:268–72.

    Article  CAS  Google Scholar 

  13. Wen J, Lv R, Ma H, Shen H, He C, Wang J, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69:1028–38.e1026.

    Article  CAS  Google Scholar 

  14. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–5.

    Article  CAS  Google Scholar 

  15. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  Google Scholar 

  16. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270–4.

    Article  CAS  Google Scholar 

  17. Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, et al. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 2018;19:69.

    Article  Google Scholar 

  18. Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E. et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 2016;7:64527–42.

    Article  Google Scholar 

  19. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–70.

    Article  CAS  Google Scholar 

  20. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591–606.e596.

    Article  CAS  Google Scholar 

  21. Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019;442:252–61.

    Article  CAS  Google Scholar 

  22. Song Y, Pan G, Chen L, Ma S, Zeng T, Man Chan TH, et al. Loss of ATOH8 increases stem cell features of hepatocellular carcinoma cells. Gastroenterology. 2015;149:1068–81.e1065.

    Article  CAS  Google Scholar 

  23. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    Article  CAS  Google Scholar 

  24. Faye MD, Graber TE, Holcik M. Assessment of selective mRNA translation in mammalian cells by polysome profiling. J Vis Exp. 2014;92:e52295.

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (project Nos.: 81702783 and 81672475), the Natural Science Foundation of Guangdong Province (project No.: 2017A030310574), and Guangdong Medical Science and Technology Research Fund (A2019494 and A2019252).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanzhao Zhang, Baohua Hou or Xiaoshun He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, S., Zhuang, H. et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene 39, 4507–4518 (2020). https://doi.org/10.1038/s41388-020-1303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1303-7

This article is cited by

Search

Quick links