Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer

Abstract

Platinum drugs are used in first-line to treat ovarian cancer, but most of the patients eventually generate resistance after treatment with these drugs. Although both c-Myc and EZH2 have been implicated in regulating cisplatin resistance in ovarian cancer, the interplay between these two regulators is poorly understood. Using RNA sequence analysis (RNA-seq), for the first time we find that miR-137 level is extremely low in cisplatin resistant ovarian cancer cells, correlating with higher levels of c-Myc and EZH2 expression. Further analyses indicate that in resistant cells c-Myc enhances the expression of EZH2 by directly suppressing miR-137 that targets EZH2 mRNA, and increased expression of EZH2 activates cellular survival pathways, resulting in the resistance to cisplatin. Inhibition of c-Myc-miR-137-EZH2 pathway re-sensitizes resistant cells to cisplatin. Both in vivo and in vitro analyses indicate that cisplatin treatment activates c-Myc-miR-137-EZH2 pathway. Importantly, elevated c-Myc-miR-137-EZH2 pathway in resistant cells is sustained by dual oxidase maturation factor 1 (DUOXA1)-mediated production of reactive oxygen species (ROS). Significantly, clinical studies further confirm the activated c-Myc-miR-137-EZH2 pathway in platinum drug-resistant or recurrent ovarian cancer patients. Thus, our studies elucidate a novel role of miR-137 in regulating c-Myc-EZH2 axis that is crucial to the regulation of cisplatin resistance in ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol. 2018;233:4546–4562.

    Article  CAS  PubMed  Google Scholar 

  2. Banno K, Yanokura M, Iida M, Adachi M, Nakamura K, Nogami Y. et al. Application of microRNA in diagnosis and treatment of ovarian cancer. Biomed Res Int. 2014;2014:232817

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stronach EA, Cunnea P, Turner C, Guney T, Aiyappa R, Jeyapalan S, et al. The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma. Oncotarget. 2015;6:31593–603.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.

    Article  CAS  PubMed  Google Scholar 

  5. Choi YM, Kim HK, Shim W, Anwar MA, Kwon JW, Kwon HK, et al. Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation. PLoS ONE. 2015;10:e0135083.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE. 2013;8:e81162.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83.

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4:307–20.

    Article  CAS  Google Scholar 

  9. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  10. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  11. Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, et al. MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther. 2008;7:1–9.

    Article  CAS  PubMed  Google Scholar 

  12. Brennecke J, Cohen SM. Towards a complete description of the microRNA complement of animal genomes. Genome Biol. 2003;4:228.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fabbri M, Croce CM. Role of microRNAs in lymphoid biology and disease. Curr Opin Hematol. 2011;18:266–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Passetti F, Ferreira CG, Costa FF. The impact of microRNAs and alternative splicing in pharmacogenomics. Pharm J. 2009;9:1–13.

    CAS  Google Scholar 

  15. Haenisch S, Cascorbi I. miRNAs as mediators of drug resistance. Epigenomics. 2012;4:369–81.

    Article  CAS  PubMed  Google Scholar 

  16. Hodzic J, Giovannetti E, Diosdado B, Adema AD, Peters GJ. Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells. Nucleosides Nucleotides Nucleic Acids. 2011;30:1214–22.

    Article  CAS  PubMed  Google Scholar 

  17. Moitra K, Im K, Limpert K, Borsa A, Sawitzke J, Robey R, et al. Differential gene and microRNA expression between etoposide resistant and etoposide sensitive MCF7 breast cancer cell lines. PLoS ONE. 2012;7:e45268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Jaarsveld MT, Helleman J, Boersma AW, van Kuijk PF, van Ijcken WF, Despierre E, et al. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene. 2013;32:4284–93.

    Article  PubMed  Google Scholar 

  19. Luo Y, Li X, Dong J, Sun W. microRNA-137 is downregulated in thyroid cancer and inhibits proliferation and invasion by targeting EGFR. Tumour Biol: J Int Soc Oncodev Biol Med. 2016;37:7749–55.

    Article  CAS  Google Scholar 

  20. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 2008;68:1362–8.

    Article  CAS  PubMed  Google Scholar 

  21. Dong S, Jin M, Li Y, Ren P, Liu J. MiR-137 acts as a tumor suppressor in papillary thyroid carcinoma by targeting CXCL12. Oncol Rep. 2016;35:2151–8.

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Chen L, Tian XD, Zhang T. MiR-137 and its target TGFA modulate cell growth and tumorigenesis of non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2017;21:511–7.

    CAS  PubMed  Google Scholar 

  23. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310:306–10.

    Article  CAS  PubMed  Google Scholar 

  24. Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ. Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:8570–6.

    Article  CAS  Google Scholar 

  25. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.

    Article  CAS  PubMed  Google Scholar 

  26. Hu S, Yu L, Li Z, Shen Y, Wang J, Cai J, et al. Overexpression of EZH2 contributes to acquired cisplatin resistance in ovarian cancer cells in vitro and in vivo. Cancer Biol Ther. 2010;10:788–95.

    Article  CAS  PubMed  Google Scholar 

  27. Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene. 2003;22:9007–21.

    Article  CAS  PubMed  Google Scholar 

  28. Bell D, Berchuck A, Birrer M, Chien J, Cramer D, Dao F. et al. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  CAS  Google Scholar 

  29. Prathapam T, Aleshin A, Guan Y, Gray JW, Martin GS. p27Kip1 mediates addiction of ovarian cancer cells to MYCC (c-MYC) and their dependence on MYC paralogs. J Biol Chem. 2010;285:32529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Citro G, D’Agnano I, Leonetti C, Perini R, Bucci B, Zon G, et al. C-myc antisense oligodeoxynucleotides enhance the efficacy of cisplatin in melanoma chemotherapy in vitro and in nude mice. Cancer Res. 1998;58:283–9.

    CAS  PubMed  Google Scholar 

  31. Knapp DC, Mata JE, Reddy MT, Devi GR, Iversen PL. Resistance to chemotherapeutic drugs overcome by c-Myc inhibition in a Lewis lung carcinoma murine model. Anti-Cancer Drugs. 2003;14:39–47.

    Article  CAS  PubMed  Google Scholar 

  32. Leonetti C, Biroccio A, Candiloro A, Citro G, Fornari C, Mottolese M, et al. Increase of cisplatin sensitivity by c-myc antisense oligodeoxynucleotides in a human metastatic melanoma inherently resistant to cisplatin. Clin Cancer Res Off J Am Assoc Cancer Res. 1999;5:2588–95.

    CAS  Google Scholar 

  33. Lin CP, Liu JD, Chow JM, Liu CR, Liu HE. Small-molecule c-Myc inhibitor, 10058-F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells. Anti-Cancer Drugs. 2007;18:161–70.

    Article  CAS  PubMed  Google Scholar 

  34. Mizutani Y, Fukumoto M, Bonavida B, Yoshida O. Enhancement of sensitivity of urinary bladder tumor cells to cisplatin by c-myc antisense oligonucleotide. Cancer. 1994;74:2546–54.

    Article  CAS  PubMed  Google Scholar 

  35. Pyndiah S, Tanida S, Ahmed KM, Cassimere EK, Choe C, Sakamuro D. c-MYC suppresses BIN1 to release poly(ADP-ribose) polymerase 1: a mechanism by which cancer cells acquire cisplatin resistance. Sci Signal. 2011;4:ra19.

    Article  PubMed  Google Scholar 

  36. Sklar MD, Prochownik EV. Modulation of cis-platinum resistance in Friend erythroleukemia cells by c-myc. Cancer Res. 1991;51:2118–23.

    CAS  PubMed  Google Scholar 

  37. Walker TL, White JD, Esdale WJ, Burton MA, DeCruz EE. Tumour cells surviving in vivo cisplatin chemotherapy display elevated c-myc expression. Br J Cancer. 1996;73:610–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie XK, Yang DS, Ye ZM, Tao HM. Recombinant antisense C-myc adenovirus increase in vitro sensitivity of osteosarcoma MG-63 cells to cisplatin. Cancer Invest. 2006;24:1–8.

    Article  CAS  PubMed  Google Scholar 

  39. Reyes-Gonzalez JM, Armaiz-Pena GN, Mangala LS, Valiyeva F, Ivan C, Pradeep S, et al. Targeting c-MYC in platinum-resistant ovarian cancer. Mol Cancer Ther. 2015;14:2260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jazaeri AA, Shibata E, Park J, Bryant JL, Conaway MR, Modesitt SC, et al. Overcoming platinum resistance in preclinical models of ovarian cancer using the neddylation inhibitor MLN4924. Mol Cancer Ther. 2013;12:1958–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langdon SP, Lawrie SS, Hay FG, Hawkes MM, McDonald A, Hayward IP, et al. Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res. 1988;48:6166–72.

    CAS  PubMed  Google Scholar 

  42. Cui S, Sun Y, Liu Y, Liu C, Wang J, Hao G, et al. MicroRNA137 has a suppressive role in liver cancer via targeting EZH2. Mol Med Rep. 2017;16:9494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen J, Wu Y, Xu JY, Zhang J, Sinclair SH, Yanoff M, et al. ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD. Invest Ophthalmol Vis Sci. 2010;51:35–46.

    Article  PubMed  Google Scholar 

  44. Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem. 2000;79:355–69.

    Article  CAS  PubMed  Google Scholar 

  45. Chou TC, Talalay P. Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul. 1984;22:27–55.

    Article  CAS  Google Scholar 

  46. Zhao X, Lwin T, Zhang X, Huang A, Wang J, Marquez VE, et al. Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia. 2013;27:2341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Warburton A, Breen G, Rujescu D, Bubb VJ, Quinn JP. Characterization of a REST-regulated internal promoter in the schizophrenia genome-wide associated gene MIR137. Schizophr Bull. 2015;41:698–707.

    Article  PubMed  Google Scholar 

  48. Fruehauf JP, Meyskens FL Jr.. Reactive oxygen species: a breath of life or death? Clinical Cancer Res Off J Am Assoc Cancer Res. 2007;13:789–94.

    Article  CAS  Google Scholar 

  49. Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci USA. 2014;111:E5429–5438.

    Article  CAS  PubMed  Google Scholar 

  50. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  51. Sandiford SD, Kennedy KA, Xie X, Pickering JG, Li SS. Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation. Cell Commun Signal CCS. 2014;12:5.

    Article  PubMed  Google Scholar 

  52. Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu CC, et al. EZH2 Modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming. Cancer Res. 2017;77:6651–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smonskey M, Lasorsa E, Rosario S, Kirk JS, Hernandez-Ilizaliturri FJ, Ellis L. EZH2 inhibition re-sensitizes multidrug resistant B-cell lymphomas to etoposide mediated apoptosis. Oncoscience. 2016;3:21–30.

    PubMed  PubMed Central  Google Scholar 

  54. Wu Y, Zhang Z, Cenciarini ME, Proietti CJ, Amasino M, Hong T, et al. Tamoxifen resistance in breast cancer is regulated by the EZH2-ERalpha-GREB1 transcriptional axis. Cancer Res. 2018;78:671–84.

    Article  CAS  PubMed  Google Scholar 

  55. Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, et al. The histone methyltransferase EZH2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 2017;20:854–67.

    Article  CAS  PubMed  Google Scholar 

  56. Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastas. Rev. 2012;31:753–61.

    Article  CAS  Google Scholar 

  57. Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S. Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol Cell Biol. 2012;32:840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem. 2006;281:18269–72.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou W, Sun W, Yung MMH, Dai S, Cai Y, Chen CW. et al. Autocrine activation of JAK2 by IL-11 promotesplatinum drug resistance. Oncogene. 2018;37:3981–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meng Y, Chen CW, Yung MMH, Sun W, Sun J, Li Z, et al. DUOXA1-mediated ROS production promotes cisplatin resistance by activating ATR-Chk1 pathway in ovarian cancer. Cancer Lett. 2018;428:104–16.

    Article  CAS  PubMed  Google Scholar 

  61. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–6.

    Article  CAS  PubMed  Google Scholar 

  62. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Dev Ther. 2015;9:6327–42.

    CAS  Google Scholar 

  63. Sun J, Guo Y, Fu X, Wang Y, Liu Y, Huo B, et al. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers. Onco Targets Ther. 2016;9:21–30.

    CAS  PubMed  Google Scholar 

  64. Sun J, Fu X, Wang Y, Liu Y, Zhang Y, Hao T, et al. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration. Am J Transl Res. 2016;8:3077–86.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by funding from the National Institutes of Health (CA177898 and CA184717 to WZ), the McCormick Genomic and Proteomic Center. W. Zhu was supported by a Research Scholar Grant, RSG-13-214-01-DMC from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David W. Chan or Wenge Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors are the co-first authors: Jing Sun, Xin Cai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Cai, X., Yung, M.M. et al. miR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer. Oncogene 38, 564–580 (2019). https://doi.org/10.1038/s41388-018-0459-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0459-x

This article is cited by

Search

Quick links