Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A functional interplay between Δ133p53 and ΔNp63 in promoting glycolytic metabolism to fuel cancer cell proliferation

Abstract

Although ΔNp63 is known to promote cancer cell proliferation, the underlying mechanism behind its oncogenic function remains elusive. We report here a functional interplay between ΔNp63 and Δ133p53. These two proteins are co-overexpressed in a subset of human cancers and cooperate to promote cell proliferation. Mechanistically, Δ133p53 binds to ΔNp63 and utilizes its transactivation domain to upregulate GLUT1, GLUT4, and PGM expression driving glycolysis. While increased glycolysis provides cancer cells with anabolic metabolism critical for proliferation and survival, it can be harnessed for selective cancer cell killing. Indeed, we show that tumors overexpressing both ΔNp63 and Δ133p53 exhibit heightened sensitivity to vitamin C that accumulate to a lethal level due to accelerated uptake via overexpressed GLUT1. These observations offer a new therapeutic avenue that could be exploited for clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16:393–405.

    Article  CAS  PubMed  Google Scholar 

  2. Shen L, Sun X, Fu Z, Yang G, Li J, Yao L. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res. 2012;18:1561–7.

    Article  CAS  PubMed  Google Scholar 

  3. Green DR, Chipuk JE. p53 and metabolism: inside the TIGAR. Cell. 2006;126:30–2.

    Article  CAS  PubMed  Google Scholar 

  4. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64:2627–33.

    Article  CAS  PubMed  Google Scholar 

  6. Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem. 1997;272:22776–80.

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 2015;356:197–203.

    Article  CAS  PubMed  Google Scholar 

  8. Khoury MP, Bourdon JC. p53 isoforms: an intracellular microprocessor? Genes Cancer. 2011;2:453–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Joruiz SM, Bourdon JC. p53 Isoforms: key regulators of the cell fate decision. Cold Spring Harbor Perspect Med. 2016;6. https://doi.org/10.1101/cshperspect.a02

  10. Ji W, Zhang N, Zhang H, Ma J, Zhong H, Jiao J, et al. Expression of p53beta and Delta133p53 isoforms in different gastric tissues. Int J Clin Exp Pathol. 2015;8:10468–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moore HC, Jordan LB, Bray SE, Baker L, Quinlan PR, Purdie CA, et al. The RNA helicase p68 modulates expression and function of the Delta133 isoform(s) of p53, and is inversely associated with Delta133p53 expression in breast cancer. Oncogene. 2010;29:6475–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Aoubala M, Murray-Zmijewski F, Khoury MP, Fernandes K, Perrier S, Bernard H, et al. p53 directly transactivates Delta133p53alpha, regulating cell fate outcome in response to DNA damage. Cell Death Differ. 2011;18:248–58.

    Article  CAS  PubMed  Google Scholar 

  13. Marcel V, Vijayakumar V, Fernandez-Cuesta L, Hafsi H, Sagne C, Hautefeuille A, et al. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene. 2010;29:2691–700.

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Ng SM, Chang C, Zhang Z, Bourdon JC, Lane DP, et al. p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev. 2009;23:278–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gong L, Pan X, Yuan ZM, Peng J, Chen J. p53 coordinates with Delta133p53 isoform to promote cell survival under low-level oxidative stress. J Mol Cell Biol. 2016;8:88–90.

    Article  CAS  PubMed  Google Scholar 

  16. Gong L, Gong H, Pan X, Chang C, Ou Z, Ye S, et al. p53 isoform Delta113p53/Delta133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 2015;25:351–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gong L, Pan X, Chen H, Rao L, Zeng Y, Hang H, et al. p53 isoform Delta133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Sci Rep. 2016;6:37281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gong L, Chen J. Delta113p53/Delta133p53 converts P53 from a repressor to a promoter of DNA double-stand break repair. Mol Cell Oncol. 2016;3:e1033587.

    Article  PubMed  Google Scholar 

  19. Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M, et al. TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle. 2007;6:274–85.

    Article  CAS  PubMed  Google Scholar 

  20. Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H, et al. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J. 2005;24:2458–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005;19:2122–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tannapfel A, Schmelzer S, Benicke M, Klimpfinger M, Kohlhaw K, Mossner J, et al. Expression of the p53 homologues p63 and p73 in multiple simultaneous gastric cancer. J Pathol. 2001;195:163–70.

    Article  CAS  PubMed  Google Scholar 

  23. Barbareschi M, Pecciarini L, Cangi MG, Macri E, Rizzo A, Viale G, et al. p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol. 2001;25:1054–60.

    Article  CAS  PubMed  Google Scholar 

  24. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hainaut P, Pfeifer GP. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harbor Perspect Med. 2016;6. https://doi.org/10.1101/cshperspect.a026

  26. Turnquist C, Horikawa I, Foran E, Major EO, Vojtesek B, Lane DP, et al. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ. 2016;23:1515–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mondal AM, Horikawa I, Pine SR, Fujita K, Morgan KM, Vera E, et al. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest. 2013;123:5247–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Horikawa I, Park KY, Isogaya K, Hiyoshi Y, Li H, Anami K, et al. Delta133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ. 2017;24:1017–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350:1391–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol. 2009;11:1135–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Roth I, Campbell H, Rubio C, Vennin C, Wilson M, Wiles A, et al. The Delta133p53 isoform and its mouse analogue Delta122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2. Oncogene. 2016;35:4981–9.

    Article  CAS  PubMed  Google Scholar 

  32. Bernard H, Garmy-Susini B, Ainaoui N, Van Den Berghe L, Peurichard A, Javerzat S, et al. The p53 isoform, Delta133p53alpha, stimulates angiogenesis and tumour progression. Oncogene. 2013;32:2150–60.

    Article  CAS  PubMed  Google Scholar 

  33. Arsic N, Gadea G, Lagerqvist EL, Busson M, Cahuzac N, Brock C, et al. The p53 isoform Delta133p53beta promotes cancer stem cell potential. Stem Cell Rep. 2015;4:531–40.

    Article  CAS  Google Scholar 

  34. Hofstetter G, Berger A, Schuster E, Wolf A, Hager G, Vergote I, et al. Delta133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer. Br J Cancer. 2011;105:1593–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, et al. DeltaNp63 versatilely regulates a broad NF-kappaB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res. 2011;71:3688–700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2012;2:1036–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Morningside Foundation, the Zhu Fund and grants from the National Cancer Institute at the National Institute of Health (R01CA85679, R01CA167814, and R01CA125144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Min Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Pan, X., Lim, CB. et al. A functional interplay between Δ133p53 and ΔNp63 in promoting glycolytic metabolism to fuel cancer cell proliferation. Oncogene 37, 2150–2164 (2018). https://doi.org/10.1038/s41388-017-0117-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0117-8

This article is cited by

Search

Quick links