Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer

Abstract

Antiestrogen resistance in estrogen receptor positive (ER+) breast cancer is associated with increased expression and activity of insulin-like growth factor 1 receptor (IGF1R). Here, a kinome siRNA screen has identified 10 regulators of IGF1R-mediated antiestrogen with clinical significance. These include the tamoxifen resistance suppressors BMPR1B, CDK10, CDK5, EIF2AK1, and MAP2K5, and the tamoxifen resistance inducers CHEK1, PAK2, RPS6KC1, TTK, and TXK. The p21-activated kinase 2, PAK2, is the strongest resistance inducer. Silencing of the tamoxifen resistance inducing genes, particularly PAK2, attenuates IGF1R-mediated resistance to tamoxifen and fulvestrant. High expression of PAK2 in ER+ metastatic breast cancer patients is correlated with unfavorable outcome after first-line tamoxifen monotherapy. Phospho-proteomics has defined PAK2 and the PAK-interacting exchange factors PIXα/β as downstream targets of IGF1R signaling, which are independent from PI3K/ATK and MAPK/ERK pathways. PAK2 and PIXα/β modulate IGF1R signaling-driven cell scattering. Targeting PIXα/β entirely mimics the effect of PAK2 silencing on antiestrogen re-sensitization. These data indicate PAK2/PIX as an effector pathway in IGF1R-mediated antiestrogen resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of determinants in IGF1R-mediated tamoxifen resistance by kinome siRNA Screen.
Fig. 2: Clinical relevance of 10 IGF1R-mediated tamoxifen resistance hits
Fig. 3: Targeting effects on antiestrogen dose-responses of the IGF1R-mediated tamoxifen resistance hits with clinical relevance.
Fig. 4: Targeting of tamoxifen resistance inducer PAK2 abrogates IGF1R-mediated antiestrogen resistance.
Fig. 5: PAK signaling in response to IGF-1 stimulation and interaction with IGF-1 signaling network.
Fig. 6: PAK2 is activated apart from PI3K/AKT and MAPK/ERK pathways and promotes cell-cycle progression and anti-apoptosis in IGF1R-mediated antiestrogen resistance.
Fig. 7: Involvement of PAK2 survival signaling components PIXα/β in IGF1R-mediated antiestrogen resistance.
Fig. 8: Relevance of PAK2 expression in primary tumor specimens to poor outcome of metastatic breast cancer patients after first-line tamoxifen.

Similar content being viewed by others

References

  1. Osborne CK, Yochmowitz MG, Knight WA 3rd, McGuire WL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 1980;46:2884–8.

    Article  CAS  PubMed  Google Scholar 

  2. Arimidex, Tamoxifen, Alone or in Combination (ATAC) Trialists' Group, Forbes JF, Cuzick J, Buzdar A, Howell A, Tobias JS. et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol 2008;9:45–53.

  3. Jaiyesimi IA, Buzdar AU, Decker DA, Hortobagyi GN. Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol: J Am Soc Clin Oncol 1995;13:513–29.

    Article  CAS  Google Scholar 

  4. Cleator SJ, Ahamed E, Coombes RC, Palmieri C. A 2009 update on the treatment of patients with hormone receptor-positive breast cancer. Clin Breast Cancer 2009;9(Suppl 1):S6–S17.

    Article  CAS  PubMed  Google Scholar 

  5. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 2009;9:631–43.

    Article  CAS  PubMed  Google Scholar 

  6. Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer 2004;11:643–58.

    Article  CAS  PubMed  Google Scholar 

  7. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 2004;96:926–35.

    Article  CAS  PubMed  Google Scholar 

  8. Jin K, Kong X, Shah T, Penet MF, Wildes F, Sgroi DC, et al. The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway. Proc Natl Acad Sci USA 2012;109:2736–41.

    Article  CAS  PubMed  Google Scholar 

  9. Moerkens M, Zhang Y, Wester L, van de Water B, Meerman JH. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer 2014;14:283.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jin K, Park S, Teo WW, Korangath P, Cho SS, Yoshida T, et al. HOXB7 Is an ERalpha cofactor in the activation of HER2 and multiple ER target genes leading to endocrine resistance. Cancer Discov 2015;5:944–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci USA 2004;101:9393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fox EM, Miller TW, Balko JM, Kuba MG, Sanchez V, Smith RA, et al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res 2011;71:6773–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Winder T, Giamas G, Wilson PM, Zhang W, Yang D, Bohanes P, et al. Insulin-like growth factor receptor polymorphism defines clinical outcome in estrogen receptor-positive breast cancer patients treated with tamoxifen. Pharm J 2014;14:28–34.

    CAS  Google Scholar 

  14. Zhang Y, Moerkens M, Ramaiahgari S, de Bont H, Price L, Meerman J, et al. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res 2011;13:R52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnaldez FI, Helman LJ Targeting the insulin growth factor receptor 1. Hematol Oncolo Clin North Am 2012; 26: 527-42, vii-viii.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Law JH, Habibi G, Hu K, Masoudi H, Wang MY, Stratford AL, et al. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res 2008;68:10238–46.

    Article  CAS  PubMed  Google Scholar 

  17. Luey BC, May FE. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer 2016;15:8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sachdev D. Regulation of breast cancer metastasis by IGF signaling. J Mammary Gland Biol Neoplasia 2008;13:431–41.

    Article  PubMed  Google Scholar 

  19. Werner H, Bruchim I. The insulin-like growth factor-I receptor as an oncogene. Arch Physiol Biochem 2009;115:58–71.

    Article  CAS  PubMed  Google Scholar 

  20. Heskamp S, Boerman OC, Molkenboer-Kuenen JD, Wauters CA, Strobbe LJ, Mandigers CM, et al. Upregulation of IGF-1R expression during neoadjuvant therapy predicts poor outcome in breast cancer patients. Plos One 2015;10:e0117745.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez-Malerva L, Park J, Zou L, Hu Y, Moradpour Z, Pearlberg J, et al. High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci USA 2011;108:2058–63.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mendes-Pereira AM, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I, et al. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci USA 2012;109:2730–5.

    Article  CAS  PubMed  Google Scholar 

  23. Jansen MP, Foekens JA, van Staveren IL, Dirkzwager-Kiel MM, Ritstier K, Look MP, et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol 2005;23:732–40.

    Article  CAS  PubMed  Google Scholar 

  24. Kok M, Linn SC, Van Laar RK, Jansen MP, van den Berg TM, Delahaye LJ, et al. Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen. Breast Cancer Res Treat 2009;113:275–83.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005;365:671–9.

    Article  CAS  PubMed  Google Scholar 

  26. Nheu T, He H, Hirokawa Y, Walker F, Wood J, Maruta H. PAK is essential for RAS-induced upregulation of cyclin D1 during the G1 to S transition. Cell Cycle 2004;3:71–74.

    Article  CAS  PubMed  Google Scholar 

  27. Puto LA, Pestonjamasp K, King CC, Bokoch GM. p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J Biol Chem 2003;278:9388–93.

    Article  CAS  PubMed  Google Scholar 

  28. Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer 2014;14:13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabusa H, Brooks T, Massey AJ. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol Cancer Res: MCR 2013;11:109–21.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Fu M, Wang L, Liu J, Li Y, Brakebusch C, et al. p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem 2013;288:20093–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA 2011;108:7177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frank SR, Bell JH, Frodin M, Hansen SH. A betaPIX-PAK2 complex confers protection against Scrib-dependent and cadherin-mediated apoptosis. Curr Biol 2012;22:1747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Menges CW, Sementino E, Talarchek J, Xu J, Chernoff J, Peterson JR, et al. Group I p21-activated kinases (PAKs) promote tumor cell proliferation and survival through the AKT1 and Raf-MAPK pathways. Mol Cancer Res 2012;10:1178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santiago-Medina M, Gregus KA, Gomez TM. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth. J Cell Sci 2013;126:1122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou L, Ercolano E, Ammoun S, Schmid MC, Barczyk MA, Hanemann CO. Merlin-Deficient Human Tumors Show Loss of Contact Inhibition and Activation of Wnt/beta-Catenin Signaling Linked to the PDGFR/Src and Rac/PAK Pathways. Neoplasia 2011;13:1101–U1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye P, Hu Q, Liu H, Yan Y, D’Ercole AJ. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures. Glia 2010;58:1031–41.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Chernoff J. Pak1 Kinase Links ErbB2 to beta-Catenin in Transformation of Breast Epithelial Cells. Cancer Res 2013;73:3671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reijm EA, Timmermans AM, Look MP, Meijer-van Gelder ME, Stobbe CK, van Deurzen CH, et al. High protein expression of EZH2 is related to unfavorable outcome to tamoxifen in metastatic breast cancer. Ann Oncol 2014;25:2185–90.

    Article  CAS  PubMed  Google Scholar 

  39. Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M, et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 2008;13:91–104.

    Article  CAS  PubMed  Google Scholar 

  40. Lundgren K, Holm K, Nordenskjold B, Borg A, Landberg G. Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer. Breast Cancer Res 2008;10:R81.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gao C, Ma T, Pang L, Xie R. Activation of P21-activated protein kinase 2 is an independent prognostic predictor for patients with gastric cancer. Diagn Pathol 2014;9:55.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Holm C, Rayala S, Jirstrom K, Stal O, Kumar R, Landberg G. Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst 2006;98:671–80.

    Article  CAS  PubMed  Google Scholar 

  43. Kok M, Zwart W, Holm C, Fles R, Hauptmann M, Van’t Veer LJ, et al. PKA-induced phosphorylation of ERalpha at serine 305 and high PAK1 levels is associated with sensitivity to tamoxifen in ER-positive breast cancer. Breast Cancer Res Treat 2011;125:1–12.

    Article  CAS  PubMed  Google Scholar 

  44. Lacombe J, Mange A, Bougnoux AC, Prassas I, Solassol J. A multiparametric serum marker panel as a complementary test to mammography for the diagnosis of node-negative early-stage breast cancer and DCIS in young women. Cancer Epidemiol Biomark Prev 2014;23:1834–42.

    Article  Google Scholar 

  45. Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer 2006;6:459–71.

    Article  CAS  PubMed  Google Scholar 

  46. Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene 2009;28:2545–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer 2014;14:13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Padala RR, Karnawat R, Viswanathan SB, Thakkar AV, Das AB, Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/beta-catenin signaling network constitutively activate inter-pathway positive feedback loops. Mol Biosyst. 2017;13:830–40.

    Article  CAS  PubMed  Google Scholar 

  49. Vadlakonda L, Pasupuleti M, Pallu R. Role of PI3K-AKT-mTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front Oncol 2013;3:85.

    PubMed  PubMed Central  Google Scholar 

  50. Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, et al. Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 2002;277:44417–30.

    Article  CAS  PubMed  Google Scholar 

  51. Beeser A, Jaffer ZM, Hofmann C, Chernoff J. Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 2005;280:36609–15.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Z, Pedersen E, Basse A, Lefever T, Peyrollier K, Kapoor S, et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene 2010;29:3362–73.

    Article  CAS  PubMed  Google Scholar 

  53. Feng Q, Baird D, Yoo S, Antonyak M, Cerione RA. Phosphorylation of the cool-1/beta-Pix protein serves as a regulatory signal for the migration and invasive activity of Src-transformed cells. J Biol Chem 2010;285:18806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsu RM, Tsai MH, Hsieh YJ, Lyu PC, Yu JS. Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell 2010;21:287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat Method 2009;6:569–75.

    Article  CAS  Google Scholar 

  56. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 2006;7:952–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 2002;1:376–86.

    Article  CAS  Google Scholar 

  58. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Method 2009;6:359–62.

    Article  CAS  Google Scholar 

  59. Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 2009;49:199–221.

    Article  CAS  PubMed  Google Scholar 

  60. Puigvert JC, de Bont H, van de Water B, Danen EH High-throughput live cell imaging of apoptosis. Current protocols in cell biology/editorial board, Juan S Bonifacino [et al.]2010; Chapter 18: Unit 18 10 11-13.

  61. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 2006;100:229–35.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the research project of Top Institute Pharma (Leiden, The Netherlands) “Nuclear Receptors in Targeted Cancer Therapy” (T3-107) and the research project of Dutch Cancer Society “Novel Protein Kinase Targets in Receptor Tyrosine Kinase-mediated Drug Resistant Breast Cancer” (UL-2011-5124).

Author contributions

YZ, JHNM, MPHMJ, and BvdW designed research. RS, YZ, and EHJD designed automated high-throughput screening. YZ performed screening and analyzed screening data. TG, CP, YZ, and MdG contributed to SILAC phospho-proteomics and data analysis. JAH, MMT, MPL, CHMvD, JWMM, EMJJB, and MPHMJ contributed to clinical evaluations and analyses. YZ, LW, JH, and MM carried out experimental assays. YZ, MPHMJ, and BvdW wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghui Zhang or Bob van de Water.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wester, L., He, J. et al. IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer. Oncogene 37, 1869–1884 (2018). https://doi.org/10.1038/s41388-017-0027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0027-9

This article is cited by

Search

Quick links