Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic resistance to anti-oestrogen therapy in breast cancer

Abstract

The hormone receptor oestrogen receptor-α (ER) orchestrates physiological mammary gland development, breast carcinogenesis and the progression of breast tumours into lethal, treatment-refractory systemic disease. Selective antagonism of ER signalling has been one of the most successful therapeutic approaches in oncology, benefiting patients as both a cancer preventative measure and a cancer treatment strategy. However, resistance to anti-oestrogen therapy is a major clinical challenge. Over the past decade, we have gained an understanding of how breast cancers evolve under the pressure of anti-oestrogen therapy. This is best depicted by the case of oestrogen-independent mutations in the gene encoding ER (ESR1), which are virtually absent in primary breast cancer but highly prevalent (20–40%) in anti-oestrogen-treated metastatic disease. These and other findings highlight the ‘evolvability’ of ER+ breast cancer and the need to understand molecular processes by which this evolution occurs. Recent development and approval of next-generation ER antagonists to target ESR1-mutant breast cancer underscores the clinical importance of this evolvability and sets a new paradigm for the treatment of ER+ breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oestrogen receptor-α signalling and modes of inhibition.
Fig. 2: Treatment of ER+ breast cancer with endocrine therapies creates a strong selective pressure that drives tumour evolution.

Similar content being viewed by others

References

  1. Brisken, C. & O’Malley, B. Hormone action in the mammary gland. Cold Spring Harb. Perspect. Biol. 2, a003178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeSantis, C. E. et al. Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–451 (2019).

    Article  PubMed  Google Scholar 

  3. Giaquinto, A. N. et al. Breast cancer statistics, 2022. CA Cancer J. Clin. 72, 524–541 (2022).

    Article  PubMed  Google Scholar 

  4. Eeckhoute, J., Carroll, J. S., Geistlinger, T. R., Torres-Arzayus, M. I. & Brown, M. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev. 20, 2513–2526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waks, A. G. & Winer, E. P. Breast cancer treatment: a review. J. Am. Med. Assoc. 321, 288–300 (2019).

    Article  CAS  Google Scholar 

  6. Burstein, H. J. Systemic therapy for estrogen receptor-positive, HER2-negative breast cancer. N. Engl. J. Med. 383, 2557–2570 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Hartkopf, A. D., Grischke, E. M. & Brucker, S. Y. Endocrine-resistant breast cancer: mechanisms and treatment. Breast Care 15, 347–354 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnston, S. R. D. & Dowsett, M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat. Rev. Cancer 3, 821–831 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Patel, H. K. & Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther. 186, 1–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Sakamoto, T. et al. Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol. Cell. Endocrinol. 192, 93–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, H., Lee, E. S., Deb Los Reyes, A., Zapf, J. W. & Jordan, V. C. Silencing and reactivation of the selective estrogen receptor modulator-estrogen receptor alpha complex. Cancer Res. 61, 3632–3639 (2001).

    CAS  PubMed  Google Scholar 

  12. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Jordan, V. C. Tamoxifen: catalyst for the change to targeted therapy. Eur. J. Cancer 44, 30–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gottardis, M. M. & Jordan, V. C. Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res. 48, 5183–5187 (1988).

    CAS  PubMed  Google Scholar 

  15. Wolf, D. M. & Jordan, V. C. Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res. Treat. 31, 117–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Wakeling, A. E. Therapeutic potential of pure antioestrogens in the treatment of breast cancer. J. Steroid Biochem. Mol. Biol. 37, 771–775 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Wakeling, A. E., Dukes, M. & Bowler, J. A potent specific pure antiestrogen with clinical potential. Cancer Res. 51, 3867–3873 (1991).

    CAS  PubMed  Google Scholar 

  18. Long, X. & Nephew, K. P. Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J. Biol. Chem. 281, 9607–9615 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Wardell, S. E., Marks, J. R. & McDonnell, D. P. The turnover of estrogen receptor α by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochem. Pharmacol. 82, 122–130 (2011).

    Article  Google Scholar 

  20. Guan, J. et al. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell 178, 949–963.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Stenoien, D. L. et al. FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat. Cell Biol. 3, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–1494 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Sutherland, R. L., Green, M. D., Hall, R. E., Reddel, R. R. & Taylor, I. W. Tamoxifen induces accumulation of MCF 7 human mammary carcinoma cells in the G0/G1 phase of the cell cycle. Eur. J. Cancer Clin. Oncol. 19, 615–621 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Butler, W. B. & Kelsey, W. H. Effects of tamoxifen and 4-hydroxytamoxifen on synchronized cultures of the human breast cancer cell line MCF-7. Breast Cancer Res. Treat. 11, 37–43 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Watts, C. K. W., Sweeney, K. J. E., Warlters, A., Musgrove, E. A. & Sutherland, R. L. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res. Treat. 31, 95–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Musgrove, E. A. et al. Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol. Cell Biol. 13, 3577–3587 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Doisneau-Sixou, S. F. et al. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr. Relat. Cancer 10, 179–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Davies, C. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Elledge, R. M. et al. Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by immuno-histochemistry in predicting response to tamoxifen in metastatic breast cancer: a Southwest Oncology Group Study. Int. J. Cancer 89, 111–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita, H. et al. Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer 13, 74–83 (2006).

    Article  PubMed  Google Scholar 

  31. Najjar, S. & Allison, K. H. Updates on breast biomarkers. Virchows Arch. 480, 163–176 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Robertson, J. F. et al. Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: results from the FIRST study. J. Clin. Oncol. 27, 4530–4535 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Bonneterre, J. et al. Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the tamoxifen or arimidex randomized group efficacy and tolerability study. J. Clin. Oncol. 18, 3748–3757 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Nabholtz, J. M., Bonneterre, J., Buzdar, A., Robertson, J. F. & Thürlimann, B. Anastrozole (Arimidex) versus tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: survival analysis and updated safety results. Eur. J. Cancer 39, 1684–1689 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Mauri, D., Pavlidis, N., Polyzos, N. P. & Ioannidis, J. P. Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J. Natl Cancer Inst. 98, 1285–1291 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Allison, K. H. et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J. Clin. Oncol. 38, 1346–1366 (2020).

    Article  PubMed  Google Scholar 

  37. Watts, C. K. & King, R. J. Overexpression of estrogen receptor in HTB 96 human osteosarcoma cells results in estrogen-induced growth inhibition and receptor cross talk. J. Bone Min. Res. 9, 1251–1258 (1994).

    Article  CAS  Google Scholar 

  38. Schiff, R. et al. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin. Cancer Res. 10, 331s–336s (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Musheyev, D. & Alayev, A. Endocrine therapy resistance: what we know and future directions. Explor. Target. Antitumor Ther. 3, 480–496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Q. X., Borg, A., Wolf, D. M., Oesterreich, S. & Fuqua, S. A. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 57, 1244–1249 (1997). Following the initial identification of a case in 1997, a series of publications (Toy et al., Robinson et al., Merenbakh-Lamin et al., Li et al. and Jeselsohn et al.) in the early 2010s identified a collection of activating ESR1 mutations to be recurrent, acquired mechanisms of resistance to anti-oestrogen therapy in metastatic ER+ breast cancer.

    CAS  PubMed  Google Scholar 

  41. Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013). This study characterizes the activity and drug sensitivity of various ESR1 mutations as well as the therapeutic potential of oral SERDs in antagonizing ESR1 mutants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Merenbakh-Lamin, K. et al. D538G mutation in estrogen receptor-α: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 73, 6856–6864 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Li, S. et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Jeselsohn, R. et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res. 20, 1757–1767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toy, W. et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov. 7, 277–287 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  Google Scholar 

  48. Chandarlapaty, S. et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol. 2, 1310–1315 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438.e6 (2018). This study dissects the genomic data of more than 1,500 ER+ breast tumours and incorporates clinical treatment and outcomes to define acquired alterations that may contribute to resistance to hormonal therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fribbens, C. et al. Plasma ESR1 mutations and the treatment of estrogen receptor–positive advanced breast cancer. J. Clin. Oncol. 34, 2961–2968 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Schiavon, G. et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 7, 313ra182 (2015). This study highlights the clinical acquisition of ESR1 mutants in patients with ER+ breast cancer using serial sampling of circulating tumour DNA.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kuang, Y. et al. Unraveling the clinicopathological features driving the emergence of ESR1 mutations in metastatic breast cancer. npj Breast Cancer 4, 22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fribbens, C. V. et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA (ctDNA) in metastatic breast cancer. J. Clin. Oncol. 35, 1015–1015 (2017).

    Article  Google Scholar 

  54. Katzenellenbogen, J. A., Mayne, C. G., Katzenellenbogen, B. S., Greene, G. L. & Chandarlapaty, S. Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat. Rev. Cancer 18, 377–388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fanning, S. W. et al. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. eLife 5, e12792 (2016).

    Google Scholar 

  56. Gates, L. A. et al. Proteomic profiling identifies key coactivators utilized by mutant ERα proteins as potential new therapeutic targets. Oncogene 37, 4581–4598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeselsohn, R., Buchwalter, G., De Angelis, C., Brown, M. & Schiff, R. ESR1 mutations — a mechanism for acquired endocrine resistance in breast cancer. Nat. Rev. Clin. Oncol. 12, 573–583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu, G. et al. Hormonal modulation of ESR1 mutant metastasis. Oncogene 40, 997–1011 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Z. et al. Hotspot ESR1 mutations are multimodal and contextual modulators of breast cancer metastasis. Cancer Res. 82, 1321–1339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harrod, A. et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene 36, 2286–2296 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Bahreini, A. et al. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res. 19, 60 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Martin, L. A. et al. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat. Commun. 8, 1865 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liang, J. et al. Giredestrant reverses progesterone hypersensitivity driven by estrogen receptor mutations in breast cancer. Sci. Transl. Med. 14, eabo5959 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Najim, O. et al. The association between type of endocrine therapy and development of estrogen receptor-1 mutation(s) in patients with hormone-sensitive advanced breast cancer: a systematic review and meta-analysis of randomized and non-randomized trials. Biochim. Biophys. Acta Rev. Cancer 1872, 188315 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Carlson, K. E., Choi, I., Gee, A., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: evidence that an open pocket conformation is required for ligand interaction. Biochemistry 36, 14897–14905 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, Y. et al. Structurally novel antiestrogens elicit differential responses from constitutively active mutant estrogen receptors in breast cancer cells and tumors. Cancer Res. 77, 5602–5613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Kruchten, M. et al. Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov. 5, 72–81 (2015).

    Article  PubMed  Google Scholar 

  68. Ferraro, E., Walsh, E. M., Tao, J. J., Chandarlapaty, S. & Jhaveri, K. Accelerating drug development in breast cancer: new frontiers for ER inhibition. Cancer Treat. Rev. 109, 102432 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Lei, J. T. et al. Functional annotation of ESR1 gene fusions in estrogen receptor-positive breast cancer. Cell Rep. 24, 1434–1444.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hartmaier, R. J. et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann. Oncol. 29, 872–880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Giltnane, J. M. et al. Genomic profiling of ER(+) breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance. Sci. Transl. Med. 9, eaai7993 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lei, J. T., Gou, X. & Ellis, M. J. ESR1 fusions drive endocrine therapy resistance and metastasis in breast cancer. Mol. Cell Oncol. 5, e1526005 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lonard, D. M. & O’Malley B. W. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol. Cell 27, 691–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Myers, E. et al. Inverse relationship between ER-beta and SRC-1 predicts outcome in endocrine-resistant breast cancer. Br. J. Cancer 91, 1687–1693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McBryan, J. et al. Metastatic progression with resistance to aromatase inhibitors is driven by the steroid receptor coactivator SRC-1. Cancer Res. 72, 548–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Keeton, E. K. & Brown, M. Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-α and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol. Endocrinol. 19, 1543–1554 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Girault, I. et al. Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin. Cancer Res. 9, 1259–1266 (2003).

    CAS  PubMed  Google Scholar 

  79. Prat, A. & Perou, C. M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 5, 5–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Knowlden, J. M. et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144, 1032–1044 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Dowsett, M. et al. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the arimidex, tamoxifen, alone or in combination trial. J. Clin. Oncol. 26, 1059–1065 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Nayar, U. et al. Acquired HER2 mutations in ER(+) metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 51, 207–216 (2019). This study identifies HER2 activating mutations in metastatic biopsies of patients with ER+ breast cancer resistant to hormonal therapy.

    Article  CAS  PubMed  Google Scholar 

  83. Croessmann, S. et al. Combined blockade of activating ERBB2 mutations and ER results in synthetic lethality of ER+/HER2 mutant breast cancer. Clin. Cancer Res. 25, 277–289 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Smyth, L. M. et al. Efficacy and determinants of response to HER kinase inhibition in HER2-mutant metastatic. Cancer Discov. 10, 198–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Mao, P. et al. Acquired FGFR and FGF alterations confer resistance to estrogen receptor (ER) targeted therapy in ER(+) metastatic breast cancer. Clin. Cancer Res. 26, 5974–5989 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Lupien, M. et al. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance. Genes Dev. 24, 2219–2227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pearson, A. et al. Inactivating NF1 mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin. Cancer Res. 26, 608–622 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Sokol, E. S. et al. Loss of function of NF1 is a mechanism of acquired resistance to endocrine therapy in lobular breast cancer. Ann. Oncol. 30, 115–123 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Arruabarrena-Aristorena, A. et al. FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in breast cancer. Cancer Cell 38, 534–550.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Adams, E. J. et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature 571, 408–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Seachrist, D. D., Anstine, L. J. & Keri, R. A. FOXA1: a pioneer of nuclear receptor action in breast cancer. Cancers 13, 5205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Quintanal-Villalonga, Á. et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 17, 360–371 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chan, J. M. et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science 377, 1180–1191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hoefnagel, L. D. C. et al. Prognostic value of estrogen receptor α and progesterone receptor conversion in distant breast cancer metastases. Cancer 118, 4929–4935 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Gutierrez, M. C. et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J. Clin. Oncol. 23, 2469–2476 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Drury, S. C. et al. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr. Relat. Cancer 18, 565–577 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Ottaviano, Y. L. et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 54, 2552–2555 (1994).

    CAS  PubMed  Google Scholar 

  98. Yang, X. et al. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 60, 6890–6894 (2000).

    CAS  PubMed  Google Scholar 

  99. Vesuna, F. et al. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-α. Oncogene 31, 3223–3234 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, L. & Sharma, A. The quest for orally available selective estrogen receptor degraders (SERDs). ChemMedChem 15, 2072–2097 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Hernando, C. et al. Oral selective estrogen receptor degraders (SERDs) as a novel breast cancer therapy: present and future from a clinical perspective. Int. J. Mol. Sci. 22, 7812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ozyurt, R. & Ozpolat, B. Molecular mechanisms of anti-estrogen therapy resistance and novel targeted therapies. Cancers 14, 5206 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Willson, T. M. et al. 3-[4-(1,2-Diphenylbut-1-enyl)phenyl]acrylic acid: a non-steroidal estrogen with functional selectivity for bone over uterus in rats. J. Med. Chem. 37, 1550–1552 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, Y. L. et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol. Cell 18, 413–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Bentrem, D. et al. Molecular mechanism of action at estrogen receptor alpha of a new clinically relevant antiestrogen (GW7604) related to tamoxifen. Endocrinology 142, 838–846 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Lloyd, M. R., Wander, S. A., Hamilton, E., Razavi, P. & Bardia, A. Next-generation selective estrogen receptor degraders and other novel endocrine therapies for management of metastatic hormone receptor-positive breast cancer: current and emerging role. Ther. Adv. Med. Oncol. 14, 17588359221113694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wardell, S. E., Nelson, E. R., Chao, C. A., Alley, H. M. & McDonnell, D. P. Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocr. Relat. Cancer 22, 713–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Garner, F., Shomali, M., Paquin, D., Lyttle, C. R. & Hattersley, G. RAD1901: a novel, orally bioavailable selective estrogen receptor degrader that demonstrates antitumor activity in breast cancer xenograft models. Anticancer Drugs 26, 948–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bihani, T. et al. Elacestrant (RAD1901), a selective estrogen receptor degrader (SERD), has antitumor activity in multiple ER(+) breast cancer patient-derived xenograft models. Clin. Cancer Res. 23, 4793–4804 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Shomali, M. et al. SAR439859, a novel selective estrogen receptor degrader (SERD), demonstrates effective and broad antitumor activity in wild-type and mutant ER-positive breast cancer models. Mol. Cancer Ther. 20, 250–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Liang, J. et al. GDC-9545 (giredestrant): a potent and orally bioavailable selective estrogen receptor antagonist and degrader with an exceptional preclinical profile for ER+ breast cancer. J. Med. Chem. 64, 11841–11856 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT04059484 (2019).

  113. Tolaney, S. M. et al. 212MO AMEERA-3, a phase II study of amcenestrant (AMC) versus endocrine treatment of physician’s choice (TPC) in patients (pts) with endocrine-resistant ER+/HER-advanced breast cancer (aBC). Ann. Oncol. 33, S634–S635 (2022).

    Article  Google Scholar 

  114. Wang, Y. & Tang, S.-C. The race to develop oral SERDs and other novel estrogen receptor inhibitors: recent clinical trial results and impact on treatment options. Cancer Metastasis Rev. 41, 975–990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT04478266 (2020).

  116. Bardia, A. et al. AMEERA-5: a randomized, double-blind phase 3 study of amcenestrant plus palbociclib versus letrozole plus palbociclib for previously untreated ER+/HER2-advanced breast cancer. Ther. Adv. Med. Oncol. 14, 17588359221083956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bardia, A. et al. EMERALD: phase III trial of elacestrant (RAD1901) vs endocrine therapy for previously treated ER+ advanced breast cancer. Future Oncol. 15, 3209–3218 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT03778931 (2019).

  119. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT04214288 (2020).

  120. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT04576455 (2020).

  121. Chen, Y. C. et al. Latest generation estrogen receptor degraders for the treatment of hormone receptor-positive breast cancer. Exp. Opin. Investig. Drugs 31, 515–529 (2022).

    Article  CAS  Google Scholar 

  122. Martin Jimenez, M. et al. 211MO giredestrant (GDC-9545) vs physician choice of endocrine monotherapy (PCET) in patients (pts) with ER+, HER2– locally advanced/metastatic breast cancer (LA/mBC): primary analysis of the phase II, randomised, open-label acelERA BC study. Ann. Oncol. 33, S633–S634 (2022).

    Article  Google Scholar 

  123. Oliveira, M. et al. Abstract GS3-02: GS3-02 camizestrant, a next generation oral SERD vs fulvestrant in post-menopausal women with advanced ER-positive HER2-negative breast cancer: results of the randomized, multi-dose phase 2 SERENA-2 trial. Cancer Res. 83, GS3-02 (2023).

    Article  Google Scholar 

  124. Fasching, P. A. et al. Neoadjuvant giredestrant (GDC-9545) plus palbociclib (P) versus anastrozole (A) plus P in postmenopausal women with estrogen receptor–positive, HER2-negative, untreated early breast cancer (ER+/HER2–eBC): final analysis of the randomized, open-label, international phase 2 coopERA BC study. J. Clin. Oncol. 40, 589–589 (2022).

    Article  Google Scholar 

  125. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Flanagan, J. J. & Neklesa, T. K. Targeting nuclear receptors with PROTAC degraders. Mol. Cell. Endocrinol. 493, 110452 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Hamilton, E. P. et al. ARV-471, an estrogen receptor (ER) PROTAC degrader, combined with palbociclib in advanced ER+/human epidermal growth factor receptor 2-negative (HER2-) breast cancer: phase 1b cohort (part C) of a phase 1/2 study. J. Clin. Oncol. 40, TPS1120 (2022).

    Article  Google Scholar 

  128. Puyang, X. et al. Discovery of selective estrogen receptor covalent antagonists for the treatment of ERα(WT) and ERα(MUT). Cancer Discov. 8, 1176–1193 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Furman, C. et al. Covalent ERα antagonist H3B-6545 demonstrates encouraging preclinical activity in therapy-resistant breast cancer. Mol. Cancer Ther. 21, 890–902 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT03250676 (2017).

  131. Hamilton, E. P. et al. Abstract P1-17-10: H3B-6545, a novel selective estrogen receptor covalent antagonist (SERCA), in estrogen receptor positive (ER+), human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer — a phase II study. Cancer Res. 82, P1-17-10–P11-17-10 (2022).

    Article  Google Scholar 

  132. Hamilton, E. P. et al. Phase I/II study of H3B-6545, a novel selective estrogen receptor covalent antagonist (SERCA), in estrogen receptor positive (ER+), human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer. J. Clin. Oncol. 39, 1018–1018 (2021).

    Article  Google Scholar 

  133. Pernas, S., Tolaney, S. M., Winer, E. P. & Goel, S. CDK4/6 inhibition in breast cancer: current practice and future directions. Ther. Adv. Med. Oncol. 10, 1758835918786451 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gil-Gil, M. et al. The role of CDK4/6 inhibitors in early breast cancer. Breast 58, 160–169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fassl, A., Geng, Y. & Sicinski, P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375, eabc1495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT01942135 (2013).

  137. Li, Z. et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell 34, 893–905.e8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yang, C. et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36, 2255–2264 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Cornell, L., Wander, S. A., Visal, T., Wagle, N. & Shapiro, G. I. MicroRNA-mediated suppression of the TGF-β pathway confers transmissible and reversible CDK4/6 inhibitor resistance. Cell Rep. 26, 2667–2680.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, Q. et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 12, 356–371 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    Article  PubMed  Google Scholar 

  142. Turner, N. et al. Abstract GS3-04: GS3-04 capivasertib and fulvestrant for patients with aromatase inhibitor-resistant hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: results from the phase III CAPItello-291 trial. Cancer Res. 83, GS3-04 (2023).

    Article  Google Scholar 

  143. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Turner, N. et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70, 2085–2094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Spoerke, J. M. et al. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat. Commun. 7, 11579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mohammed, H. et al. Progesterone receptor modulates ERα action in breast cancer. Nature 523, 313–317 (2015). This article highlights the role of PR in modulating ER function and behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Singhal, H. et al. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer. Sci. Adv. 2, e1501924 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cottu, P. H. et al. Phase I study of onapristone, a type I antiprogestin, in female patients with previously treated recurrent or metastatic progesterone receptor-expressing cancers. PLoS ONE 13, e0204973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Nishino, T., Ishibashi, K., Hirtreiter, C. & Nishino, Y. Potentiation of the antitumor effect of tamoxifen by combination with the antiprogestin onapristone. J. Steroid Biochem. Mol. Biol. 116, 187–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Carroll, J. S., Hickey, T. E., Tarulli, G. A., Williams, M. & Tilley, W. D. Deciphering the divergent roles of progestogens in breast cancer. Nat. Rev. Cancer 17, 54–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Gonzalez, L. O. et al. Androgen receptor expresion in breast cancer: relationship with clinicopathological characteristics of the tumors, prognosis, and expression of metalloproteases and their inhibitors. BMC Cancer 8, 149 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Collins, L. C. et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod. Pathol. 24, 924–931 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Niemeier, L. A., Dabbs, D. J., Beriwal, S., Striebel, J. M. & Bhargava, R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod. Pathol. 23, 205–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. D’Amato, N. C. et al. Cooperative dynamics of AR and ER activity in breast cancer. Mol. Cancer Res. 14, 1054–1067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cochrane, D. R. et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 16, R7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT02007512 (2013).

  157. Krop, I. et al. A randomized placebo controlled phase II trial evaluating exemestane with or without enzalutamide in patients with hormone receptor-positive breast cancer. Clin. Cancer Res. 26, 6149–6157 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Hickey, T. E. et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat. Med. 27, 310–320 (2021). This study dissects the role of AR activation in modulating resistance to hormonal therapy in breast cancer.

    Article  CAS  PubMed  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT03734029 (2018).

  160. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 387, 9–20 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT03901339 (2019).

  162. Rugo, H. S. et al. Primary results from TROPiCS-02: a randomized phase 3 study of sacituzumab govitecan (SG) versus treatment of physician’s choice (TPC) in patients (Pts) with hormone receptor-positive/HER2-negative (HR+/HER2−) advanced breast cancer. J. Clin. Oncol. 40, LBA1001 (2022).

    Article  Google Scholar 

  163. Stanton, S. E., Adams, S. & Disis, M. L. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2, 1354–1360 (2016).

    Article  PubMed  Google Scholar 

  164. Zhang, M. et al. Expression of PD-L1 and prognosis in breast cancer: a meta-analysis. Oncotarget 8, 31347–31354 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Segovia-Mendoza, M. & Morales-Montor, J. Immune tumor microenvironment in breast cancer and the participation of estrogen and its receptors in cancer physiopathology. Front. Immunol. 10, 348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vathiotis, I. A. et al. Immune checkpoint blockade in hormone receptor-positive breast cancer: resistance mechanisms and future perspectives. Clin. Breast Cancer 22, 642–649 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov, https://classic.clinicaltrials.gov/show/NCT04161755 (2019).

  168. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Muller, M. et al. The immune landscape of human pancreatic ductal carcinoma: key players, clinical implications, and challenges. Cancers 14, 995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li, X. et al. Immune checkpoint blockade in pancreatic cancer: trudging through the immune desert. Semin. Cancer Biol. 86, 14–27 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Ullman, N. A., Burchard, P. R., Dunne, R. F. & Linehan, D. C. Immunologic strategies in pancreatic cancer: making cold tumors hot. J. Clin. Oncol. 40, 2789–2805 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Russo, M. & Bardelli, A. Lesion-directed therapies and monitoring tumor evolution using liquid biopsies. Cold Spring Harb. Perspect. Med. 7, a029587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sant, M., Bernat-Peguera, A., Felip, E. & Margelí, M. Role of ctDNA in breast cancer. Cancers 14, 310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rao, S. et al. Transcription factor-nucleosome dynamics from plasma cfDNA identifies ER-driven states in breast cancer. Sci. Adv. 8, eabm4358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ciara Metcalfe or Sarat Chandarlapaty.

Ethics declarations

Competing interests

J.L. and C.M. are both Genentech/Roche employees and own shares of Roche. C.M. is a named co-inventor on patent 11081236 entitled ‘Diagnostic and therapeutic methods for the treatment of breast cancer’. S.C. reports research grants from NIH/NCI and Breast Cancer Research Foundation during the conduct of the study; personal fees from Novartis, AstraZeneca, Nuvalent, Boxer Capital, Effector and Neogenomics; equity/leadership in Totus Medicines and Odyssey Biosciences and grants from Daiichi Sankyo and AstraZeneca outside the submitted work; and a patent for CDK4/CDK6 degraders is also pending. M.W. has no competing interest.

Peer review

Peer review information

Nature Reviews Cancer thanks Jason Carroll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ADCs

A class of drugs that combine monoclonal antibodies with cytotoxic agents to specifically target cells expressing the antigens recognized by those antibodies.

Aromatase inhibitors

A class of drugs that block the synthesis of oestrogens by the aromatase enzyme in non-ovarian tissues.

LBD

The C-terminal ligand-binding domain of ER, responsible for the binding of oestrogen ligand.

Liquid biopsies

A technology that allows sampling of body fluids such as blood for molecular profiling, allowing for a less-invasive way of tumour monitoring, detection and characterization than traditional tissue-based biopsies.

SERCA

A class of anti-oestrogen agents that bind covalently to the LBD of ER and prevent recruitment of co-activators.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Will, M., Liang, J., Metcalfe, C. et al. Therapeutic resistance to anti-oestrogen therapy in breast cancer. Nat Rev Cancer 23, 673–685 (2023). https://doi.org/10.1038/s41568-023-00604-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00604-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer