Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The rostromedial tegmental nucleus gates fat overconsumption through ventral tegmental area output in male rats

Subjects

Abstract

Excessive consumption of palatable foods that are rich in fats and sugars has contributed to the increasing prevalence of obesity worldwide. Similar to addictive drugs, such foods activate the brain’s reward circuit, involving mesolimbic dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and the prefrontal cortex. Neuroadaptations occurring in this circuit are hypothesized to contribute to uncontrolled consumption of such foods, a common feature of most of eating disorders and obesity. The rostromedial tegmental nucleus (RMTg), also named tail of the VTA (tVTA), is an inhibitory structure projecting to the VTA and the lateral hypothalamus (LH), two key brain regions in food intake regulation. Prior research has demonstrated that the RMTg responds to addictive drugs and influences their impact on mesolimbic activity and reward-related behaviors. However, the role of the RMTg in food intake regulation remains largely unexplored. The present study aimed to investigate the role of the RMTg and its projections to the VTA and the LH in regulating food intake in rats. To do so, we examined eating patterns of rats with either bilateral excitotoxic lesions of the RMTg or specific lesions of RMTg-VTA and RMTg-LH pathways. Rats were exposed to a 6-week ‘free choice high-fat and high-sugar’ diet, followed by a 4-week palatable food forced abstinence and a 24 h re-access period. Our results indicate that an RMTg-VTA pathway lesion increases fat consumption following 6 weeks of diet and at time of re-access. The RMTg-LH pathway lesion produces a milder effect with a decrease in global calorie intake. These findings suggest that the RMTg influences palatable food consumption and relapse through its projections to the VTA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuroanatomical characterization of RMTg-VTA and RMTg-LH connectivity.
Fig. 2: Bilateral excitotoxic lesion of the RMTg modulates palatable food intake in a free choice obesogenic diet.
Fig. 3: Targeted lesion of the RMTg-VTA pathway increases fat intake, relapse and promotes locomotor activation during forced abstinence and re-access.
Fig. 4: Specific lesion of the RMTg-LH pathway decreases total food intake and influences locomotor activation during the last week of forced abstinence.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study can be provided upon request from the corresponding author.

References

  1. Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science. 1998;280:1371–4.

    Article  CAS  PubMed  Google Scholar 

  2. Demeke S, Rohde K, Chollet-Hinton L, Sutton C, Kong KL, Fazzino TL. Change in hyper-palatable food availability in the US food system over 30 years: 1988-2018. Public Health Nutr. 2023;26:182–9.

    Article  PubMed  Google Scholar 

  3. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron. 2011;69:664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahn BH, Kim M, Kim SY. Brain circuits for promoting homeostatic and non-homeostatic appetites. Exp Mol Med. 2022;54:349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berridge KC, Ho CY, Richard JM, Difeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrario CR, Labouebe G, Liu S, Nieh EH, Routh VH, Xu S, et al. Homeostasis meets motivation in the battle to control food intake. J Neurosci. 2016;36:11469–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bijoch Ł, Klos J, Pawłowska M, Wiśniewska J, Legutko D, Szachowicz U, et al. Whole-brain tracking of cocaine and sugar rewards processing. Transl Psychiatry. 2023;13:20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bijoch Ł, Klos J, Pękała M, Fiołna K, Kaczmarek L, Beroun A. Diverse processing of pharmacological and natural rewards by the central amygdala. Cell Rep. 2023;42:113036.

    Article  CAS  PubMed  Google Scholar 

  9. Nieh EH, Matthews GA, Allsop SA, Presbrey KN, Leppla CA, Wichmann R, et al. Decoding neural circuits that control compulsive sucrose seeking. Cell. 2015;160:528–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jennings JH, Rizzi G, Stamatakis AM, Ung RL, Stuber GD. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science. 2013;341:1517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rossi MA, Basiri ML, McHenry JA, Kosyk O, Otis JM, Van Den Munkhof HE, et al. Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding. Science. 2019;364:1271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bourdy R, Barrot M. A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci. 2012;35:681–90.

    Article  CAS  PubMed  Google Scholar 

  13. Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566–96.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier M-J, Barrot M. gamma-Aminobutyric acid cells with cocaine-induced DeltaFosB in the ventral tegmental area innervate mesolimbic neurons. Biol Psychiatry. 2010;67:88–92.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor NE, Long H, Pei JZ, Kukutla P, Phero A, Hadaegh F, et al. The rostromedial tegmental nucleus: A key modulator of pain and opioid analgesia. Pain. 2019;160:2524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O. Negative reward signals from the lateral Habenula to Dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci. 2011;31:11457–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron. 2009;61:786–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sánchez-Catalán M-J, Barrot M. Fos response of the tail of the ventral tegmental area to food restriction entails a prediction error processing. Behav Brain Res. 2022;425:113826.

    Article  PubMed  Google Scholar 

  19. Godfrey N, Qiao M, Borgland SL. Activation of LH GABAergic inputs counteracts fasting-induced changes in tVTA/RMTG neurons. J Physiol. 2022;600:2203–24.

    Article  CAS  PubMed  Google Scholar 

  20. Bourdy R, Hertz A, Filliol D, Andry V, Goumon Y, Mendoza J, et al. The endocannabinoid system is modulated in reward and homeostatic brain regions following diet-induced obesity in rats: a cluster analysis approach. Eur J Nutr. 2021;60:4621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferreira JGP, Del-Fava F, Hasue RH, Shammah-Lagnado SJ. Organization of ventral tegmental area projections to the ventral tegmental area-nigral complex in the rat. Neuroscience. 2008;153:196–213.

    Article  CAS  PubMed  Google Scholar 

  23. Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR. The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J Comp Neurol. 2011;519:1143–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu R, Chen X, Zuo W, Li J, Kang S, Zhou L-H, et al. Ablation of μ opioid receptor-expressing GABA neurons in rostromedial tegmental nucleus increases ethanol consumption and regulates ethanol-related behaviors. Neuropharmacology. 2016;107:58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown PL, Palacorolla H, Brady D, Riegger K, Elmer GI, Shepard PD. Habenula-induced inhibition of midbrain Dopamine neurons is diminished by lesions of the Rostromedial Tegmental nucleus. J Neurosci. 2017;37:217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith RJ, Vento PJ, Chao YS, Good CH, Jhou TC. Gene expression and neurochemical characterization of the rostromedial tegmental nucleus (RMTg) in rats and mice. Brain Struct Funct. 2019;224:219–38.

    Article  CAS  PubMed  Google Scholar 

  27. Dela Cruz JAD, Coke T, Karagiorgis T, Sampson C, Icaza-Cukali D, Kest K, et al. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats. Brain Res Bull. 2015;111:9–19.

    Article  Google Scholar 

  28. Chang G-Q, Karatayev O, Lukatskaya O, Leibowitz SF. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons. Peptides. 2016;79:16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. True C, Arik A, Lindsley S, Kirigiti M, Sullivan E, Kievit P. Early high-fat diet exposure causes dysregulation of the Orexin and Dopamine neuronal populations in nonhuman primates. Front Endocrinol. 2018;9:508.

    Article  Google Scholar 

  30. Wang S, Tan Y, Zhang JE, Luo M. Pharmacogenetic activation of midbrain dopaminergic neurons induces hyperactivity. Neurosci Bull. 2013;29:517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boekhoudt L, Omrani A, Luijendijk MCM, Wolterink-Donselaar IG, Wijbrans EC, van der Plasse G, et al. Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. Eur Neuropsychopharmacol. 2016;26:1784–93.

    Article  CAS  PubMed  Google Scholar 

  32. Costall B, Domeney AM, Naylor RJ. Long-term consequences of antagonism by neuroleptics of behavioural events occurring during mesolimbic dopamine infusion. Neuropharmacology. 1984;23:287–94.

    Article  CAS  PubMed  Google Scholar 

  33. Bourdy R, Sánchez-Catalán MJ, Kaufling J, Balcita-Pedicino JJ, Freund-Mercier MJ, Veinante P, et al. Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area. Neuropsychopharmacology. 2014;39:2788–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TMK, et al. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci. 2011;14:620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morel C, Montgomery SE, Li L, Durand-de Cuttoli R, Teichman EM, Juarez B, et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nat Commun. 2022;13:1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma S, Fernandes MF, Fulton S. Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes. 2013;37:1183–91.

    Article  CAS  Google Scholar 

  38. Liu S, Globa AK, Mills F, Naef L, Qiao M, Bamji SX, et al. Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA. Proc Natl Acad Sci USA. 2016;113:2520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron. 2016;90:1286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carlin J, Hill-Smith TE, Lucki I, Reyes TM. Reversal of dopamine system dysfunction in response to high-fat diet. Obesity. 2013;21:2513–21.

    Article  CAS  PubMed  Google Scholar 

  41. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53.

    Article  PubMed  Google Scholar 

  42. Espitia-Bautista E, Escobar C. Fat rather than sugar diet leads to binge-type eating, anticipation, effort behavior and activation of the corticolimbic system. Nutr Neurosci. 2021;24:508–19.

    Article  CAS  PubMed  Google Scholar 

  43. Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, et al. Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci USA. 2011;108:16446–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gakare SG, Ugale RR. Pharmacological evaluation of lateral habenula and rostromedial tegmental nucleus in the expression of ethanol-induced place preference. Behav Pharm. 2023;34:225–35.

    Article  CAS  Google Scholar 

  45. Teegarden SL, Bale TL. Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry. 2007;61:1021–9.

    Article  PubMed  Google Scholar 

  46. Lavezzi HN, Parsley KP, Zahm DS. Modulation of locomotor activation by the rostromedial tegmental nucleus. Neuropsychopharmacology. 2015;40:676–87.

    Article  CAS  PubMed  Google Scholar 

  47. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res Rev. 1998;28:309–69.

    Article  CAS  PubMed  Google Scholar 

  48. Berridge KC. From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur J Neurosci. 2012;35:1124–43.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kelly PH, Seviour PW, Iversen SD. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res. 1975;94:507–22.

    Article  CAS  PubMed  Google Scholar 

  50. Kalivas PW, Widerlöv E, Stanley D, Breese G, Prange AJ. Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. J Pharmacol Exp Ther. 1983;227:229–37.

    CAS  PubMed  Google Scholar 

  51. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91.

    Article  CAS  PubMed  Google Scholar 

  52. Blum K, Liu Y, Shriner R, Gold MS. Reward circuitry dopaminergic activation regulates food and drug craving behavior. Curr Pharm Des. 2011;17:1158–67.

    Article  CAS  PubMed  Google Scholar 

  53. Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci. 2023;46:738–49.

    Article  CAS  PubMed  Google Scholar 

  54. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.

    Article  CAS  PubMed  Google Scholar 

  55. Barson JR, Leibowitz SF. Orexin/Hypocretin system: role in food and drug overconsumption. Int Rev Neurobiol. 2017;136:199–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006;494:845–61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stanley BG, Urstadt KR, Charles JR, Kee T. Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake. Physiol Behav. 2011;104:40–46.

    Article  CAS  PubMed  Google Scholar 

  58. Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav. 2021;229:113234.

    Article  CAS  PubMed  Google Scholar 

  59. Subramanian KS, Lauer LT, Hayes AMR, Décarie-Spain L, McBurnett K, Nourbash AC, et al. Hypothalamic melanin-concentrating hormone neurons integrate food-motivated appetitive and consummatory processes in rats. Nat Commun. 2023;14:1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guerdjikova AI, Mori N, Casuto LS, McElroy SL. Update on binge eating disorder. Med Clin North Am. 2019;103:669–80.

    Article  PubMed  Google Scholar 

  61. Freeman LR, Bentzley BS, James MH, Aston-Jones G. Sex differences in demand for highly palatable foods: role of the Orexin system. Int J Neuropsychopharmacol. 2021;24:54–63.

    Article  CAS  PubMed  Google Scholar 

  62. Buczek L, Migliaccio J, Petrovich GD. Hedonic eating: sex differences and characterization of Orexin activation and signaling. Neuroscience. 2020;436:34–45.

    Article  CAS  PubMed  Google Scholar 

  63. Spierling SR, Kreisler AD, Williams CA, Fang SY, Pucci SN, Kines KT, et al. Intermittent, extended access to preferred food leads to escalated food reinforcement and cyclic whole-body metabolism in rats: Sex differences and individual vulnerability. Physiol Behav. 2018;192:3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Melis M, De Felice M, Lecca S, Fattore L, Pistis M. Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats. Front Integr Neurosci. 2013;7:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Marion Neurdin and Adeline Coursan for their help with neuroanatomical studies, Romain Goutagny for providing retro Cre EGFP virus, Jorge Mendoza for providing the OX antibody, and Victor Mathis and Mary C. Olmstead for manuscript proofreading and fruitful discussions. We thank the PIV (Plateforme d’Imagerie in Vitro, INCI, Strasbourg) and the LNCA animal facility staff.

Funding

This project was supported by the Université de Strasbourg, the Centre National de la Recherche Scientifique (CNRS). Florian Schoukroun received a PhD fellowship from the French Ministère de l’Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Contributions

KB and RB designed the research. FS and RB performed the experiments and analyzed the data. FS, KB and RB wrote the manuscript. KB and RB prepared the revised version of the manuscript. All authors gave final approval to the manuscript.

Corresponding authors

Correspondence to Katia Befort or Romain Bourdy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoukroun, F., Befort, K. & Bourdy, R. The rostromedial tegmental nucleus gates fat overconsumption through ventral tegmental area output in male rats. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01855-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01855-w

Search

Quick links