Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiological acetic acid concentrations from ethanol metabolism stimulate accumbens shell medium spiny neurons via NMDAR activation in a sex-dependent manner

Abstract

Recent studies have implicated the ethanol metabolite, acetic acid, as neuroactive, perhaps even more so than ethanol itself. In this study, we investigated sex-specific metabolism of ethanol (1, 2, and 4 g/kg) to acetic acid in vivo to guide electrophysiology experiments in the accumbens shell (NAcSh), a key node in the mammalian reward circuit. There was a sex-dependent difference in serum acetate production, quantified via ion chromatography only at the lowest dose of ethanol (males > females). Ex vivo electrophysiology recordings of NAcSh medium spiny neurons (MSN) in brain slices demonstrated that physiological concentrations of acetic acid (2 mM and 4 mM) increased NAcSh MSN excitability in both sexes. N-methyl-D-aspartate receptor (NMDAR) antagonists, AP5 and memantine, robustly attenuated the acetic acid-induced increase in excitability. Acetic acid-induced NMDAR-dependent inward currents were greater in females compared to males and were not estrous cycle dependent. These findings suggest a novel NMDAR-dependent mechanism by which the ethanol metabolite, acetic acid, may influence neurophysiological effects in a key reward circuit in the brain from ethanol consumption. Furthermore, these findings also highlight a specific sex-dependent sensitivity in females to acetic acid-NMDAR interactions. This may underlie their more rapid advancement to alcohol use disorder and increased risk of alcohol related neurodegeneration compared to males.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Serum acetate after ethanol exposure.
Fig. 2: Acetic acid increases NAcSh MSN excitability.
Fig. 3: Impact of NMDAR antagonist on acetic acid induced increase in NAcSh MSN excitability.
Fig. 4: Acetic acid induces NMDAR-mediated inward currents and produces a more robust response in females.

Similar content being viewed by others

References

  1. Cederbaum AI. Alcohol metabolism. Clin Liver Dis. 2012;16:667–85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chapp AD, Gui L, Huber MJ, Liu J, Larson RA, Zhu J, et al. Sympathoexcitation and pressor responses induced by ethanol in the central nucleus of amygdala involves activation of NMDA receptors in rats. Am J Physiol Heart Circ Physiol. 2014;307:H701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jin S, Cao Q, Yang F, Zhu H, Xu S, Chen Q, et al. Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat Metab. 2021;3:337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chapp AD, Huber MJ, Driscoll KM, Behnke JE, Larson RA, Shan Z, et al. Local metabolism of ethanol to acetic acid/acetate in the central nucleus of amygdala elicits sympathoexcitatory responses through activation of NMDAR in Sprague Dawley Rats. bioRxiv. 2021:2020.07.20.212597.

  5. Pardo M, Betz AJ, San Miguel N, López-Cruz L, Salamone JD, Correa M. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents. Front Behav Neurosci. 2013;7:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapp AD, Mermelstein PG, Thomas MJ. The ethanol metabolite acetic acid activates mouse nucleus accumbens shell medium spiny neurons. J Neurophysiol. 2021;125:620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chapp AD, Collins AR, Driscoll KM, Behnke JE, Shan Z, Zhang L, et al. Ethanol metabolite, acetate, increases excitability of the central nucleus of amygdala neurons through activation of NMDA receptors. ACS Chem Neurosci. 2023;14:1278–90.

    Article  CAS  PubMed  Google Scholar 

  8. Mews P, Egervari G, Nativio R, Sidoli S, Donahue G, Lombroso SI, et al. Alcohol metabolism contributes to brain histone acetylation. Nature. 2019;574:717–21.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erol A, Karpyak VM. Sex and gender-related differences in alcohol use and its consequences: contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015;156:1–13.

    Article  PubMed  Google Scholar 

  10. White AM. Gender differences in the epidemiology of alcohol use and related harms in the United States. Alcohol Res. 2020;40:01.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schwabe L, Nader K, Wolf OT, Beaudry T, Pruessner JC. Neural signature of reconsolidation impairments by propranolol in humans. Biol Psychiatry. 2012;71:380–6.

    Article  CAS  PubMed  Google Scholar 

  12. Chapp AD, Schum S, Behnke JE, Hahka T, Huber MJ, Jiang E, et al. Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography. Physiol Rep. 2018;6:e13666.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chapp AD, Behnke JE, Driscoll KM, Fan Y, Hoban E, Shan Z, et al. Acetate mediates alcohol excitotoxicity in dopaminergic-like PC12 cells. ACS Chem Neurosci. 2019;10:235–45.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y-H, Wu M-L, Fu W-M. Regulation of presynaptic NMDA responses by external and intracellular pH changes at developing neuromuscular synapses. J Neurosci. 1998;18:2982–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534:213–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klawonn AM, Malenka RC. Nucleus accumbens modulation in reward and aversion. Cold Spring Harb Symp Quant Biol. 2018;83:119–29.

    Article  PubMed  Google Scholar 

  18. Jedynak J, Hearing M, Ingebretson A, Ebner SR, Kelly M, Fischer RA, et al. Cocaine and amphetamine induce overlapping but distinct patterns of AMPAR plasticity in nucleus accumbens medium spiny neurons. Neuropsychopharmacology. 2016;41:464–76.

    Article  CAS  PubMed  Google Scholar 

  19. Di Chiara G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res. 2002;137:75–114.

    Article  ADS  PubMed  Google Scholar 

  20. Pontieri FE, Tanda G, Di Chiara G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci USA. 1995;92:12304–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engleman EA, Ding ZM, Oster SM, Toalston JE, Bell RL, Murphy JM, et al. Ethanol is self-administered into the nucleus accumbens shell, but not the core: evidence of genetic sensitivity. Alcohol Clin Exp Res. 2009;33:2162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ting JT, Daigle TL, Chen Q, Feng G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol. 2014;1183:221–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chapp AD, Wang R, Cheng ZJ, Shan Z, Chen QH. Long-term high salt intake involves reduced SK currents and increased excitability of PVN neurons with projections to the rostral ventrolateral medulla in rats. Neural Plast. 2017;2017:7282834.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eisinger KRT, Chapp AD, Swanson SP, Tam D, Lopresti NM, Larson EB, et al. Caveolin-1 regulates medium spiny neuron structural and functional plasticity. Psychopharmacology. 2020;237:2673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larson RA, Chapp AD, Gui L, Huber MJ, Cheng ZJ, Shan Z, et al. High salt intake augments excitability of PVN neurons in rats: role of the endoplasmic reticulum Ca2+ store. Front Neurosci. 2017;11:182.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen QH, Toney GM. Excitability of paraventricular nucleus neurones that project to the rostral ventrolateral medulla is regulated by small-conductance Ca2+-activated K+ channels. J Physiol. 2009;587:4235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alonso-Caraballo Y, Ferrario CR. Effects of the estrous cycle and ovarian hormones on cue-triggered motivation and intrinsic excitability of medium spiny neurons in the Nucleus Accumbens core of female rats. Horm Behav. 2019;116:104583–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kourrich S, Klug JR, Mayford M, Thomas MJ. AMPAR-independent effect of striatal αCaMKII promotes the sensitization of cocaine reward. J Neurosci. 2012;32:6578–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kourrich S, Thomas MJ. Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J Neurosci. 2009;29:12275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin G, Ahmed SH, Blank T, Spiess J, Koob GF, Siggins GR. Chronic morphine treatment alters NMDA receptor-mediated synaptic transmission in the nucleus accumbens. J Neurosci. 1999;19:9081–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baraona E, Abittan CS, Dohmen K, Moretti M, Pozzato G, Chayes ZW, et al. Gender differences in pharmacokinetics of alcohol. Alcohol Clin Exp Res. 2001;25:502–7.

    Article  CAS  PubMed  Google Scholar 

  32. Chrostek L, Jelski W, Szmitkowski M, Puchalski Z. Gender-related differences in hepatic activity of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in humans. J Clin Lab Anal. 2003;17:93–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rae C, Fekete AD, Kashem MA, Nasrallah FA, Bröer S. Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res. 2012;37:2541–53.

    Article  CAS  PubMed  Google Scholar 

  34. Lovinger DM, White G, Weight FF. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science. 1989;243:1721–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Hicklin TR, Wu PH, Radcliffe RA, Freund RK, Goebel-Goody SM, Correa PR, et al. Alcohol inhibition of the NMDA receptor function, long-term potentiation, and fear learning requires striatal-enriched protein tyrosine phosphatase. Proc Natl Acad Sci. 2011;108:6650–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mulholland PJ, Carpenter-Hyland EP, Woodward JJ, Chandler LJ. Ethanol disrupts NMDA receptor and astroglial EAAT2 modulation of Kv2.1 potassium channels in hippocampus. Alcohol. 2009;43:45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, Guidone E, et al. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest. 2013;123:1605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harmata GIS, Chan AC, Merfeld MJ, Taugher-Hebl RJ, Harijan AK, Hardie JB, et al. Intoxicating effects of alcohol depend on acid-sensing ion channels. Neuropsychopharmacology. 48, 806–815 (2023).

  39. Shteinikov VY, Tikhonova TB, Korkosh VS, Tikhonov DB. Potentiation and block of ASIC1a by memantine. Cell Mol Neurobiol. 2018;38:869–81.

    Article  CAS  PubMed  Google Scholar 

  40. Xia P, Chen HS, Zhang D, Lipton SA. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci. 2010;30:11246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ho¨nack D, Lo¨scher W. Sex differences in NMDA receptor mediated responses in rats. Brain Res. 1993;620:167–70.

    Article  PubMed  Google Scholar 

  42. Woolley CS, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci. 1994;14:7680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uhl M, Schmeisser MJ, Schumann S. The sexual dimorphic synapse: from spine density to molecular composition. Front Mol Neurosci. 2022;15:818390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McRoberts JA, Li J, Ennes HS, Mayer EA. Sex-dependent differences in the activity and modulation of N-methyl-d-aspartic acid receptors in rat dorsal root ganglia neurons. Neuroscience. 2007;148:1015–20.

    Article  CAS  PubMed  Google Scholar 

  45. Benneyworth MA, Hearing MC, Asp AJ, Madayag A, Ingebretson AE, Schmidt CE, et al. Synaptic depotentiation and mGluR5 activity in the nucleus accumbens drive cocaine-primed reinstatement of place preference. J Neurosci. 2019;39:4785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hearing MC, Jedynak J, Ebner SR, Ingebretson A, Asp AJ, Fischer RA, et al. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proc Natl Acad Sci USA. 2016;113:757–62.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kourrich S, Rothwell PE, Klug JR, Thomas MJ. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci. 2007;27:7921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rowlands BD, Klugmann M, Rae CD. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation. J Neurochem. 2017;140:903–18.

    Article  CAS  PubMed  Google Scholar 

  49. Agabio R, Pisanu C, Gessa GL, Franconi F. Sex differences in alcohol use disorder. Curr Med Chem. 2017;24:2661–70.

    Article  CAS  PubMed  Google Scholar 

  50. Alfonso-Loeches S, Pascual M, Guerri C. Gender differences in alcohol-induced neurotoxicity and brain damage. Toxicology. 2013;311:27–34.

    Article  CAS  PubMed  Google Scholar 

  51. Hoffman PL, Rabe CS, Grant KA, Valverius P, Hudspith M, Tabakoff B. Ethanol and the NMDA receptor. Alcohol. 1990;7:229–31.

    Article  CAS  PubMed  Google Scholar 

  52. Lovinger DM. Excitotoxicity and alcohol-related brain damage. Alcohol Clin Exp Res. 1993;17:19–27.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou X, Hollern D, Liao J, Andrechek E, Wang H. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis. 2013;4:e560–e60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maxwell CR, Spangenberg RJ, Hoek JB, Silberstein SD, Oshinsky ML. Acetate causes alcohol hangover headache in rats. PLoS One. 2010;5:e15963.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bisaga A, Comer SD, Ward AS, Popik P, Kleber HD, Fischman MW. The NMDA antagonist memantine attenuates the expression of opioid physical dependence in humans. Psychopharmacology (Berl). 2001;157:1–10.

    Article  CAS  PubMed  Google Scholar 

  56. Krishnan-Sarin S, O’Malley SS, Franco N, Cavallo DA, Morean M, Shi J, et al. N-methyl-D-aspartate receptor antagonism has differential effects on alcohol craving and drinking in heavy drinkers. Alcohol Clin Exp Res. 2015;39:300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grigsby KB, Mangieri RA, Roberts AJ, Lopez MF, Firsick EJ, Townsley KG, et al. Preclinical and clinical evidence for suppression of alcohol intake by apremilast. J Clin Invest. 2023;133:e159103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Chau-Mi H. Phan and Pramit J. Jagtap for their assistance. We would also like to thank Dr. Manuel Esguerra, Dr. Timothy W. Chapp, Dr. Scott M. Chapp, Casey L. Mallo and Dr. Qing-Hui Chen for their proofreading and suggestions.

Funding

This study was supported by NIH R01DA041808 (MJT and PGM), T32DA007234 (ADC) and an MnDRIVE fellowship (ADC).

Author information

Authors and Affiliations

Authors

Contributions

ADC and CAN performed experiments; ADC and CAN, analyzed data; ADC, CAN, PGM and MJT, prepared figures; ADC, CAN, ARC, PGM and MJT drafted manuscript; ADC, CAN, ARC, PGM and MJT interpreted results of experiment; ADC, CAN, ARC, PGM and MJT edited and revised manuscript.

Corresponding authors

Correspondence to Paul G. Mermelstein or Mark J. Thomas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapp, A.D., Nwakama, C.A., Collins, A.R. et al. Physiological acetic acid concentrations from ethanol metabolism stimulate accumbens shell medium spiny neurons via NMDAR activation in a sex-dependent manner. Neuropsychopharmacol. 49, 885–892 (2024). https://doi.org/10.1038/s41386-023-01752-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01752-8

Search

Quick links