Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

The relationship between prefrontal cortex gray matter volume and subcortical dopamine release - an addendum

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Rogeau A, Nordio G, Veronese M, Brown K, Nour MM, Osugo M, et al. The relationship between glutamate, dopamine, and cortical gray matter: A simultaneous PET-MR study. Mol Psychiatry. 2022;27:3493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, et al. Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48:4153–60.

    Article  CAS  PubMed  Google Scholar 

  3. Ginovart N, Galineau L, Willeit M, Mizrahi R, Bloomfield PM, Seeman P, et al. Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J Neurochem. 2006;97:1089–103.

    Article  CAS  PubMed  Google Scholar 

  4. Willeit M, Ginovart N, Graff A, Rusjan P, Vitcu I, Houle S, et al. First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: A [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacology. 2008;33:279–89.

    Article  CAS  PubMed  Google Scholar 

  5. Karreman M, Moghaddam B. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J Neurochem. 1996;66:589–98.

    Article  CAS  PubMed  Google Scholar 

  6. Casey KF, Cherkasova MV, Larcher K, Evans AC, Baker GB, Dagher A, et al. Individual differences in frontal cortical thickness correlate with the d-amphetamine-induced striatal dopamine response in humans. J Neurosci. 2013;33:15285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Nics L, Pfaff S, et al. On the relationship of first-episode psychosis to the amphetamine-sensitized state: a dopamine D2/3 receptor agonist radioligand study. Transl Psychiatry. 2020;10:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003;299:1898–902.

    Article  CAS  PubMed  Google Scholar 

  9. Jensen J, Smith AJ, Willeit M, Crawley AP, Mikulis DJ, Vitcu I, et al. Separate brain regions code for salience vs. valence during reward prediction in humans. Hum Brain Mapp. 2007;28:294–302.

    Article  PubMed  Google Scholar 

  10. de la Fuente-Fernandez R, Phillips AG, Zamburlini M, Sossi V, Calne DB, Ruth TJ, et al. Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res. 2002;136:359–63.

    Article  PubMed  Google Scholar 

  11. Lidstone SC, Schulzer M, Dinelle K, Mak E, Sossi V, Ruth TJ, et al. Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch Gen Psychiatry. 2010;67:857–65.

    Article  CAS  PubMed  Google Scholar 

  12. Staley JK, Boja JW, Carroll FI, Seltzman HH, Wyrick CD, Lewin AH, et al. Mapping dopamine transporters in the human brain with novel selective cocaine analog [125I]RTI-121. Synapse. 1995;21:364–72.

    Article  CAS  PubMed  Google Scholar 

  13. White TL, Justice AJ, de Wit H. Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharm Biochem Behav. 2002;73:729–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Neil Vasdev, PhD and Prof. Sylvain Houle, PhD (Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON), and Prof. Shitij Kapur, PhD (King’s College, London, GB) for making available to us the data shown in Fig. 1. This research was funded in part by the Austrian Science Fund (FWF; grant P23585-B09). For open access purposes, the author has applied a CC BY public copyright license to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

MW drafted the manuscript. US, NPR and AW contributed intellectually and critically revised the manuscript. MW participated in collecting and analyzed the data shown in Fig. 1. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Matthäus Willeit.

Ethics declarations

Competing interests

Without relevance to this work, MW declares to having received speaker honoraria and consulting fees from Janssen-Cilag Pharma GmbH, Austria. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willeit, M., Sauerzopf, U., Praschak-Rieder, N. et al. The relationship between prefrontal cortex gray matter volume and subcortical dopamine release - an addendum. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02536-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02536-2

Search

Quick links