Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Data-driven, connectome-wide analysis identifies psychosis-specific brain correlates of fear and anxiety

Abstract

Decades of psychosis research highlight the prevalence and the clinical significance of negative emotions, such as fear and anxiety. Translational evidence demonstrates the pivotal role of the amygdala in fear and anxiety. However, most of these approaches have used hypothesis-driven analyses with predefined regions of interest. A data-driven analysis may provide a complimentary, unbiased approach to identifying brain correlates of fear and anxiety. The aim of the current study was to identify the brain basis of fear and anxiety in early psychosis and controls using a data-driven approach. We analyzed data from the Human Connectome Project for Early Psychosis, a multi-site study of 125 people with psychosis and 58 controls with resting-state fMRI and clinical characterization. Multivariate pattern analysis of whole-connectome data was used to identify shared and psychosis-specific brain correlates of fear and anxiety using the NIH Toolbox Fear-Affect and Fear-Somatic Arousal scales. We then examined clinical correlations of Fear-Affect scores and connectivity patterns. Individuals with psychosis had higher levels of Fear-Affect scores than controls (p < 0.05). The data-driven analysis identified a cluster encompassing the amygdala and hippocampus where connectivity was correlated with Fear-Affect score (p < 0.005) in the entire sample. The strongest correlate of Fear-Affect was between this cluster and the anterior insula and stronger connectivity was associated with higher Fear-Affect scores (r = 0.31, p = 0.0003). The multivariate pattern analysis also identified a psychosis-specific correlate of Fear-Affect score between the amygdala/hippocampus cluster and a cluster in the ventromedial prefrontal cortex (VMPFC). Higher Fear-Affect scores were correlated with stronger amygdala/hippocampal-VMPFC connectivity in the early psychosis group (r = 0.33, p = 0.002), but not in controls (r = −0.15, p = 0.28). The current study provides evidence for the transdiagnostic role of the amygdala, hippocampus, and anterior insula in the neural basis of fear and anxiety and suggests a psychosis-specific relationship between fear and anxiety symptoms and amygdala/hippocampal-VMPFC connectivity. Our novel data-driven approach identifies novel, psychosis-specific treatment targets for fear and anxiety symptoms and provides complimentary evidence to decades of hypothesis-driven approaches examining the brain basis of threat processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multivariate distance matrix regression (MDMR).
Fig. 2: Individuals in the early psychosis group (n = 86) had higher fear and anxiety scores than healthy controls (n = 52).
Fig. 3: Amygdala/hippocampal connectivity to broader network.
Fig. 4: Amygdala/hippocampal-insula connectivity is related to fear-affect scores in early psychosis and healthy controls.
Fig. 5: Group-specific differences in amygdala/hippocampal cluster connectivity regressed against fear-affect score.
Fig. 6: Amygdala/hippocampal-VMPFC connectivity is related to fear-affect scores in early psychosis but not in healthy controls.

Similar content being viewed by others

Data availability

Data presented in the present work was collected and minimally processed by the Human Connectome Project, specifically the early psychosis subgroup and sites. Statistics, analysis scripts, and figures are available from the corresponding author upon reasonable request.

References

  1. Kessler RC, Birnbaum H, Demler O, Falloon IR, Gagnon E, Guyer M, et al. The prevalence and correlates of nonaffective psychosis in the National Comorbidity Survey Replication (NCS-R). Biol Psychiatry. 2005;58:668–76.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, et al. Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr Bull. 2018;44:1195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bleuler E. Dementia Praecox, or the Group of Schizophrenia: International University Press. 1911.

  4. Buchanan RW, Carpenter WT. Domains of psychopathology: an approach to the reduction of heterogeneity in schizophrenia. J Nerv Ment Dis. 1994;182:193–204.

    Article  CAS  PubMed  Google Scholar 

  5. Carpenter WT, Kirkpatrick B. The heterogeneity of the long-term course of schizophrenia. Schizophr Bull. 1988;14:645–52.

    Article  PubMed  Google Scholar 

  6. Harrow M, Grossman LS, Jobe TH, Herbener ES. Do patients with schizophrenia ever show periods of recovery? A 15-year multi-follow-up study. Schizophr Bull. 2005;31:723–34.

    Article  PubMed  Google Scholar 

  7. Kraeplin E. Lectures on clinical psychiatry: William Wood & Co. 1904.

  8. Blanchard JJ, Mueser KT, Bellack AS. Anhedonia, positive and negative affect, and social functioning in schizophrenia. Schizophr Bull. 1998;24:413–24.

    Article  CAS  PubMed  Google Scholar 

  9. Pallanti S, Quercioli L, Hollander E. Social anxiety in outpatients with schizophrenia: a relevant cause of disability. Am J Psychiatry. 2004;161:53–8.

    Article  PubMed  Google Scholar 

  10. Taiminen T, Huttunen J, Heilä H, Henriksson M, Isometsä E, Kähkönen J, et al. The Schizophrenia Suicide Risk Scale (SSRS): development and initial validation. Schizophr Res. 2001;47:199–213.

    Article  CAS  PubMed  Google Scholar 

  11. Achim AM, Maziade M, Raymond E, Olivier D, Mérette C, Roy MA. How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull. 2011;37:811–21.

    Article  PubMed  Google Scholar 

  12. Fusar-Poli P, Estradé A, Stanghellini G, Venables J, Onwumere J, Messas G, et al. The lived experience of psychosis: a bottom-up review co-written by experts by experience and academics. World Psychiatry. 2022;21:168–88.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Myin-Germeys I, van Os J. Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clin Psychol Rev. 2007;27:409–24.

    Article  PubMed  Google Scholar 

  14. Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–75.

    Article  CAS  PubMed  Google Scholar 

  15. Davis M. Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol. 2006;61:741–56.

    Article  PubMed  Google Scholar 

  16. LeDoux JE, Pine DS. Using neuroscience to help understand fear and anxiety: a two-system framework. Am J Psychiatry. 2016;173:1083–93.

    Article  PubMed  Google Scholar 

  17. LeDoux J. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol. 2003;23:727–38.

    Article  PubMed  Google Scholar 

  18. Shackman AJ, Fox AS. Contributions of the central extended amygdala to fear and anxiety. J Neurosci. 2016;36:8050–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91.

    Article  PubMed  Google Scholar 

  20. Chavanne AV, Robinson OJ. The overlapping neurobiology of induced and pathological anxiety: a meta-analysis of functional neural activation. Am J Psychiatry. 2021;178:156–64.

    Article  PubMed  Google Scholar 

  21. Robinson OJ, Pike AC, Cornwell B, Grillon C. The translational neural circuitry of anxiety. J Neurol Neurosurg Psychiatry. 2019;90:1353–60.

    PubMed  Google Scholar 

  22. Myin-Germeys I, van Os J, Schwartz JE, Stone AA, Delespaul PA. Emotional reactivity to daily life stress in psychosis. Arch Gen Psychiatry. 2001;58:1137–44.

    Article  CAS  PubMed  Google Scholar 

  23. Holt DJ, Kunkel L, Weiss AP, Goff DC, Wright CI, Shin LM, et al. Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res. 2006;82:153–62.

    Article  PubMed  Google Scholar 

  24. Hall J, Whalley HC, McKirdy JW, Romaniuk L, McGonigle D, McIntosh AM, et al. Overactivation of fear systems to neutral faces in schizophrenia. Biol Psychiatry. 2008;64:70–3.

    Article  PubMed  Google Scholar 

  25. Anticevic A, Van Snellenberg JX, Cohen RE, Repovs G, Dowd EC, Barch DM. Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies. Schizophr Bull. 2012;38:608–21.

    Article  PubMed  Google Scholar 

  26. Dugré JR, Bitar N, Dumais A, Potvin S. Limbic hyperactivity in response to emotionally neutral stimuli in schizophrenia: a neuroimaging meta-analysis of the hypervigilant mind. Am J Psychiatry. 2019;176:1021–9.

    Article  PubMed  Google Scholar 

  27. Anticevic A, Tang Y, Cho YT, Repovs G, Cole MW, Savic A, et al. Amygdala connectivity differs among chronic, early course, and individuals at risk for developing schizophrenia. Schizophr Bull. 2014;40:1105–16.

    Article  PubMed  Google Scholar 

  28. Liu H, Tang Y, Womer F, Fan G, Lu T, Driesen N, et al. Differentiating patterns of amygdala-frontal functional connectivity in schizophrenia and bipolar disorder. Schizophr Bull. 2014;40:469–77.

    Article  PubMed  Google Scholar 

  29. Bjorkquist OA, Olsen EK, Nelson BD, Herbener ES. Altered amygdala-prefrontal connectivity during emotion perception in schizophrenia. Schizophr Res. 2016;175:35–41.

    Article  PubMed  Google Scholar 

  30. Feola B, McHugo M, Armstrong K, Noall MP, Flook EA, Woodward ND, et al. BNST and amygdala connectivity are altered during threat anticipation in schizophrenia. Behav Brain Res. 2021;412:113428.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mukherjee P, Whalley HC, McKirdy JW, McIntosh AM, Johnstone EC, Lawrie SM, et al. Lower effective connectivity between amygdala and parietal regions in response to fearful faces in schizophrenia. Schizophr Res. 2012;134:118–24.

    Article  PubMed  Google Scholar 

  32. Mukherjee P, Whalley HC, McKirdy JW, Sprengelmeyer R, Young AW, McIntosh AM, et al. Altered amygdala connectivity within the social brain in schizophrenia. Schizophr Bull. 2014;40:152–60.

    Article  PubMed  Google Scholar 

  33. Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Cetin-Karayumak S, et al. The organization of frontostriatal brain wiring in non-affective early psychosis compared with healthy subjects using a novel diffusion imaging fiber cluster analysis. Mol Psychiatry. 2023;28:2301–11.

  34. Birchwood M, Todd P, Jackson C. Early intervention in psychosis. The critical period hypothesis. Br J Psychiatry Suppl. 1998;172:53–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pardo-de-Santayana G, Vázquez-Bourgon J, Gómez-Revuelta M, Ayesa-Arriola R, Ortiz-Garcia de la Foz V, Crespo-Facorro B, et al. Duration of active psychosis during early phases of the illness and functional outcome: The PAFIP 10-year follow-up study. Schizophr Res. 2020;220:240–7.

    Article  PubMed  Google Scholar 

  36. Avery SN, Clauss JA, Blackford JU. The human BNST: functional role in anxiety and addiction. Neuropsychopharmacology. 2016;41:126–41.

    Article  CAS  PubMed  Google Scholar 

  37. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010;35:105–35.

    Article  PubMed  Google Scholar 

  38. Fox AS, Oler JA, Tromp DP, Fudge JL, Kalin NH. Extending the amygdala in theories of threat processing. Trends Neurosci. 2015;38:319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goode TD, Maren S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn Mem. 2017;24:480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry. 2016;21:450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neurosci Lett. 2019;693:58–67.

    Article  CAS  PubMed  Google Scholar 

  42. Hur J, Smith JF, DeYoung KA, Anderson AS, Kuang J, Kim HC, et al. Anxiety and the neurobiology of temporally uncertain threat anticipation. J Neurosci. 2020;40:7949–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shehzad Z, Kelly C, Reiss PT, Cameron Craddock R, Emerson JW, McMahon K, et al. A multivariate distance-based analytic framework for connectome-wide association studies. Neuroimage. 2014;93:74–94. Pt 1

    Article  PubMed  Google Scholar 

  44. Pilkonis PA, Choi SW, Salsman JM, Butt Z, Moore TL, Lawrence SM, et al. Assessment of self-reported negative affect in the NIH Toolbox. Psychiatry Res. 2013;206:88–97.

    Article  PubMed  Google Scholar 

  45. Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166:1092–7.

    Article  PubMed  Google Scholar 

  46. Watson D, Weber K, Assenheimer JS, Clark LA, Strauss ME, McCormick RA. Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J Abnorm Psychol. 1995;104:3–14.

    Article  CAS  PubMed  Google Scholar 

  47. Pilkonis PA, Choi SW, Reise SP, Stover AM, Riley WT, Cella D, et al. Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): depression, anxiety, and anger. Assessment. 2011;18:263–83.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pilkonis PA, Yu L, Dodds NE, Johnston KL, Maihoefer CC, Lawrence SM. Validation of the depression item bank from the Patient-Reported Outcomes Measurement Information System (PROMIS) in a three-month observational study. J Psychiatr Res. 2014;56:112–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    Article  CAS  PubMed  Google Scholar 

  50. van der Gaag M, Hoffman T, Remijsen M, Hijman R, de Haan L, van Meijel B, et al. The five-factor model of the Positive and Negative Syndrome Scale II: a ten-fold cross-validation of a revised model. Schizophr Res. 2006;85:280–7.

    Article  PubMed  Google Scholar 

  51. Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D. Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr Res. 2012;137:246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 2016;14:339–51.

    Article  PubMed  Google Scholar 

  53. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54.

    Article  PubMed  Google Scholar 

  54. Ling G, Lee I, Guimond S, Lutz O, Tandon N, Nawaz U, et al. Individual variation in brain network topology is linked to emotional intelligence. Neuroimage. 2019;189:214–23.

    Article  PubMed  Google Scholar 

  55. Nawaz U, Lee I, Beermann A, Eack S, Keshavan M, Brady R. Individual variation in functional brain network topography is linked to schizophrenia symptomatology. Schizophr Bull. 2021;47:180–8.

  56. Ward HB, Beermann A, Nawaz U, Halko MA, Janes AC, Moran LV, et al. Evidence for schizophrenia-specific pathophysiology of nicotine dependence. Front Psychiatry. 2022;13:804055.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sharma A, Wolf DH, Ciric R, Kable JW, Moore TM, Vandekar SN, et al. Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study. Am J Psychiatry. 2017;174:657–66.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shanmugan S, Wolf DH, Calkins ME, Moore TM, Ruparel K, Hopson RD, et al. Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth. Am J Psychiatry. 2016;173:517–26.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Satterthwaite TD, Vandekar SN, Wolf DH, Bassett DS, Ruparel K, Shehzad Z, et al. Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. Mol Psychiatry. 2015;20:1508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  61. Lebron-Milad K, Milad MR. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol Mood Anxiety Disord. 2012;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bangasser DA, Cuarenta A. Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci. 2021;22:674–84.

    Article  CAS  PubMed  Google Scholar 

  63. Farrell MR, Sengelaub DR, Wellman CL. Sex differences and chronic stress effects on the neural circuitry underlying fear conditioning and extinction. Physiol Behav. 2013;122:208–15.

    Article  CAS  PubMed  Google Scholar 

  64. Botvinik-Nezer R, Wager TD. Reproducibility in neuroimaging analysis: challenges and solutions. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:780–8.

    PubMed  Google Scholar 

  65. Berry SC, Wise RG, Lawrence AD, Lancaster TM. Extended-amygdala intrinsic functional connectivity networks: a population study. Hum Brain Mapp. 2021;42:1594–616.

    Article  PubMed  Google Scholar 

  66. Fullana MA, Albajes-Eizagirre A, Soriano-Mas C, Vervliet B, Cardoner N, Benet O, et al. Fear extinction in the human brain: a meta-analysis of fMRI studies in healthy participants. Neurosci Biobehav Rev. 2018;88:16–25.

    Article  PubMed  Google Scholar 

  67. Gorka AX, Torrisi S, Shackman AJ, Grillon C, Ernst M. Intrinsic functional connectivity of the central nucleus of the amygdala and bed nucleus of the stria terminalis. Neuroimage. 2018;168:392–402.

    Article  PubMed  Google Scholar 

  68. Jenks SK, Zhang S, Li CR, Hu S. Threat bias and resting state functional connectivity of the amygdala and bed nucleus stria terminalis. J Psychiatr Res. 2020;122:54–63.

    Article  PubMed  Google Scholar 

  69. Tillman RM, Stockbridge MD, Nacewicz BM, Torrisi S, Fox AS, Smith JF, et al. Intrinsic functional connectivity of the central extended amygdala. Hum Brain Mapp. 2018;39:1291–312.

    Article  PubMed  Google Scholar 

  70. Torrisi S, Gorka AX, Gonzalez-Castillo J, O’Connell K, Balderston N, Grillon C, et al. Extended amygdala connectivity changes during sustained shock anticipation. Transl Psychiatry. 2018;8:33.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Milad MR, Rauch SL, Pitman RK, Quirk GJ. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol. 2006;73:61–71.

    Article  PubMed  Google Scholar 

  72. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62:446–54.

    Article  PubMed  Google Scholar 

  73. Wen Z, Chen ZS, Milad MR. Fear extinction learning modulates large-scale brain connectivity. Neuroimage. 2021;238:118261.

    Article  PubMed  Google Scholar 

  74. Holt DJ, Lebron-Milad K, Milad MR, Rauch SL, Pitman RK, Orr SP, et al. Extinction memory is impaired in schizophrenia. Biol Psychiatry. 2009;65:455–63.

    Article  PubMed  Google Scholar 

  75. Holt DJ, Coombs G, Zeidan MA, Goff DC, Milad MR. Failure of neural responses to safety cues in schizophrenia. Arch Gen Psychiatry. 2012;69:893–903.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tuominen L, Romaniuk L, Milad MR, Goff DC, Hall J, Holt DJ. Impairment in acquisition of conditioned fear in schizophrenia. Neuropsychopharmacology. 2022;47:681–6.

    Article  PubMed  Google Scholar 

  77. Zugman A, Jett L, Antonacci C, Winkler AM, Pine DS. A systematic review and meta-analysis of resting-state fMRI in anxiety disorders: Need for data sharing to move the field forward. J Anxiety Disord. 2023;99:102773.

    Article  PubMed  Google Scholar 

  78. Mukherjee P, Sabharwal A, Kotov R, Szekely A, Parsey R, Barch DM, et al. Disconnection between amygdala and medial prefrontal cortex in psychotic disorders. Schizophr Bull. 2016;42:1056–67.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Avery SN, Clauss JA, Winder DG, Woodward N, Heckers S, Blackford JU. BNST neurocircuitry in humans. Neuroimage. 2014;91:311–23.

    Article  PubMed  Google Scholar 

  80. Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D. Reproducibility of single-subject functional connectivity measurements. AJNR Am J Neuroradiol. 2011;32:548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cerqueira RO, Ziebold C, Cavalcante D, Oliveira G, Vásquez J, Undurraga J, et al. Differences of affective and non-affective psychoses in early intervention services from Latin America. J Affect Disord. 2022;316:83–90.

    Article  PubMed  Google Scholar 

  82. Fu Z, Iraji A, Sui J, Calhoun VD. Whole-brain functional network connectivity abnormalities in affective and non-affective early phase psychosis. Front Neurosci. 2021;15:682110.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Feola B, Flook EA, Gardner H, Phan KL, Gwirtsman H, Olatunji B, et al. Altered bed nucleus of the stria terminalis and amygdala responses to threat in combat veterans with posttraumatic stress disorder. J Trauma Stress. 2023;36:359–72.

    Article  PubMed  Google Scholar 

  84. Hiser J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry. 2018;83:638–47.

    Article  PubMed  Google Scholar 

  85. Ward HB, Brady RO, Halko MA. Bridging the gap: strategies to make psychiatric neuroimaging clinically relevant. Harv Rev Psychiatry. 2021;29:185–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the patients and their families for participation in this study. We also thank the Human Connectome Project for making their data accessible and assisting with database management.

Funding

This work was supported by National Institutes of Health (NIH) grants R01MH127018 to Drs. Feola and Blackford, 1R01MH120588-01 A1 to Dr. Breier, R01 MH117012 to Dr. Lewandowski, U01 MH109977 to Drs. Breier and Shenton, R01 MH116170 to Dr. Brady and KL2TR002245 and K23DA059690 to Dr. Ward.

Author information

Authors and Affiliations

Authors

Contributions

BF, MC, SB, DH, KL, DO, AB, MS, RB, JB, and HW initiated and designed the research. BF, AB, KF, and HBW performed data analysis. BF, SH, RB, JB, and HBW interpreted the results. BF, JB, and HBW wrote the manuscript. BF and HBW prepared the figures. All authors edited the manuscript and approved the final submission.

Corresponding author

Correspondence to Heather Burrell Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feola, B., Beermann, A., Manzanarez Felix, K. et al. Data-driven, connectome-wide analysis identifies psychosis-specific brain correlates of fear and anxiety. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02512-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02512-w

Search

Quick links