Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of β2-adrenergic receptors prevents AD-type synaptotoxicity via epigenetic mechanisms

Abstract

We previously reported that prolonged exposure to an enriched environment (EE) enhances hippocampal synaptic plasticity, with one of the significant mechanistic pathways being activation of β2-adrenergic receptor (β2-AR) signaling, thereby mitigating the synaptotoxic effects of soluble oligomers of amyloid β-protein (oAβ). However, the detailed mechanism remained elusive. In this work, we recorded field excitatory postsynaptic potentials (fEPSP) in the CA1 region of mouse hippocampal slices treated with or without toxic Aβ-species. We found that pharmacological activation of β2-AR, but not β1-AR, selectively mimicked the effects of EE in enhancing LTP and preventing oAβ-induced synaptic dysfunction. Mechanistic analyses showed that certain histone deacetylase (HDAC) inhibitors mimicked the benefits of EE, but this was not seen in β2-AR knockout mice, suggesting that activating β2-AR prevents oAβ-mediated synaptic dysfunction via changes in histone acetylation. EE or activation of β-ARs each decreased HDAC2, whereas Aβ oligomers increased HDAC2 levels in the hippocampus. Further, oAβ-induced inflammatory effects and neurite degeneration were prevented by either β2-AR agonists or certain specific HDAC inhibitors. These preclinical results suggest that activation of β2-AR is a novel potential therapeutic strategy to mitigate oAβ-mediated features of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selective activation of β2-AR, not β1-AR, mimics the effects of EE in enhancing hippocampal LTP and preventing AD brain-derived Aβ oligomers from blocking it.
Fig. 2: HDAC2 but not HDAC1 is implicated in β-AR activation in response to physiologic stimuli.
Fig. 3: Activation of β-ARs decreases, while soluble Aβ oligomers increase, nuclear HDAC2 in mouse primary neurons.
Fig. 4: HDAC inhibitors prevent oAβ impairment of LTP and require activation of β2-AR.
Fig. 5: Activation of β2-AR or inhibition of HDAC protects against oAβ-mediated impairment of synaptotoxicity through an anti-inflammatory mechanism.
Fig. 6: Both a β2-AR agonist and an HDAC2 inhibitor prevent AD-brain derived oAβ-induced toxicity in human neurons.

References

  1. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, et al. Environmental novelty activates beta2-adrenergic signaling to prevent the impairment of hippocampal LTP by Abeta oligomers. Neuron. 2013;77:929–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cahill L, Pham CA, Setlow B. Impaired memory consolidation in rats produced with beta-adrenergic blockade. Neurobiol Learn Mem. 2000;74:259–66.

    CAS  PubMed  Google Scholar 

  4. Chamberlain SR, Muller U, Blackwell AD, Robbins TW, Sahakian BJ. Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology. 2006;188:397–407.

    CAS  PubMed  Google Scholar 

  5. McIntyre CK, McGaugh JL, Williams CL. Interacting brain systems modulate memory consolidation. Neurosci Biobehav Rev. 2012;36:1750–62.

    PubMed  Google Scholar 

  6. Braak H, Del, Tredici K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 2011;121:171–81.

    PubMed  Google Scholar 

  7. Mittal S, Bjornevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson’s disease. Science. 2017;357:891–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dang V, Medina B, Das D, Moghadam S, Martin KJ, Lin B, Naik P, Patel D, Nosheny R, Wesson Ashford J, et al. Formoterol, a long-acting beta2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry. 2014;75:179–88.

    CAS  PubMed  Google Scholar 

  9. Emili M, Stagni F, Salvalai ME, Uguagliati B, Giacomini A, Albac C, et al. Neonatal therapy with clenbuterol and salmeterol restores spinogenesis and dendritic complexity in the dentate gyrus of the Ts65Dn model of Down syndrome. Neurobiol Dis. 2020;140:104874.

    CAS  PubMed  Google Scholar 

  10. Bartus RT, Betourne A, Basile A, Peterson BL, Glass J, Boulis NM. beta2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic lateral sclerosis (ALS). Neurobiol Dis. 2016;85:11–24.

    CAS  PubMed  Google Scholar 

  11. Zhang ZW, Qin XY, Che FY, Xie G, Shen L, Bai YY. Effects of beta 2 adrenergic agonists on axonal injury and mitochondrial metabolism in experimental autoimmune encephalomyelitis rats. Genet Mol Res: GMR. 2015;14:13572–81.

    CAS  PubMed  Google Scholar 

  12. Gronich N, Abernethy DR, Auriel E, Lavi I, Rennert G, Saliba W. beta2-adrenoceptor agonists and antagonists and risk of Parkinson’s disease. Mov Disord: Off J Mov Disord Soc. 2018;33:1465–71.

    CAS  Google Scholar 

  13. Chen CL, Wang SY, Chen TC, Chuang CS. Association between beta2-adrenoreceptor medications and risk of Parkinson’s disease: a meta-analysis. Med (Kaunas). 2021;57(10):1006. https://doi.org/10.3390/medicina57101006.

    Article  Google Scholar 

  14. Tsai CP, Lin FC, Lee CT. Beta2-adrenergic agonist use and the risk of multiple sclerosis: a total population-based case-control study. Mult Scler. 2014;20:1593–601.

    PubMed  Google Scholar 

  15. Shankar GM, Welzel AT, McDonald JM, Selkoe DJ, Walsh DM. Isolation of low-n amyloid beta-protein oligomers from cultured cells, CSF, and brain. Methods Mol Biol. 2011;670:33–44.

    CAS  PubMed  Google Scholar 

  16. Zhang D, Mably AJ, Walsh DM, Rowan MJ. Peripheral interventions enhancing brain glutamate homeostasis relieve amyloid beta- and TNFalpha- mediated synaptic plasticity disruption in the rat hippocampus. Cereb Cortex. 2017;27:3724–35.

    PubMed  Google Scholar 

  17. Li S, Jin M, Liu L, Dang Y, Ostaszewski BL, Selkoe DJ. Decoding the synaptic dysfunction of bioactive human AD brain soluble Abeta to inspire novel therapeutic avenues for Alzheimer’s disease. Acta Neuropathol Commun. 2018;6:121.

    PubMed  PubMed Central  Google Scholar 

  18. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007;447:178–82.

    CAS  PubMed  Google Scholar 

  19. Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci. 2018;29:241–60.

    CAS  PubMed  Google Scholar 

  20. Wei Z, Meng X, El Fatimy R, Sun B, Mai D, Zhang J, et al. Environmental enrichment prevents Abeta oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiol Dis. 2020;134:104617.

    CAS  PubMed  Google Scholar 

  21. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011;31:6627–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, et al. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol. 2018;136:537–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Graff J, Joseph NF, Horn ME, Samiei A, Meng J, Seo J, et al. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell. 2014;156:261–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcez ML, Mina F, Bellettini-Santos T, Carneiro FG, Luz AP, Schiavo GL, et al. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid beta (1-42) in mice. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;77:23–31.

    CAS  Google Scholar 

  26. Gupta P, Sil S, Ghosh R, Ghosh A, Ghosh T. Intracerebroventricular abeta-induced neuroinflammation alters peripheral immune responses in rats. J Mol Neurosci: MN. 2018;66:572–86.

    CAS  PubMed  Google Scholar 

  27. Xu H, Gelyana E, Rajsombath M, Yang T, Li S, Selkoe D. Environmental enrichment potently prevents microglia-mediated neuroinflammation by human amyloid beta-protein oligomers. J Neurosci. 2016;36:9041–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma D, Farrar JD. Adrenergic regulation of immune cell function and inflammation. Semin Immunopathol. 2020;42:709–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu H, Rajsombath MM, Weikop P, Selkoe DJ. Enriched environment enhances beta-adrenergic signaling to prevent microglia inflammation by amyloid-beta. EMBO Mol Med. 2018;10:e8931.

    PubMed  PubMed Central  Google Scholar 

  30. Fischer A. Environmental enrichment as a method to improve cognitive function. What can we learn from animal models? NeuroImage. 2016;131:42–47.

    PubMed  Google Scholar 

  31. Pang TY, Hannan AJ. Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology. 2013;64:515–28.

    CAS  PubMed  Google Scholar 

  32. Hannan AJ. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol. 2014;40:13–25.

    CAS  PubMed  Google Scholar 

  33. Escorihuela RM, Fernandez-Teruel A, Tobena A, Vivas NM, Marmol F, Badia A, et al. Early environmental stimulation produces long-lasting changes on beta-adrenoceptor transduction system. Neurobiol Learn Mem. 1995;64:49–57.

    CAS  PubMed  Google Scholar 

  34. Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 2012;483:222–6.

    PubMed  PubMed Central  Google Scholar 

  35. Singh P, Thakur MK. Histone deacetylase 2 inhibition attenuates downregulation of hippocampal plasticity gene expression during aging. Mol Neurobiol. 2018;55:2432–42.

    CAS  PubMed  Google Scholar 

  36. Brandwein NJ, Nguyen PV. A requirement for epigenetic modifications during noradrenergic stabilization of heterosynaptic LTP in the hippocampus. Neurobiol Learn Mem. 2019;161:72–82.

    CAS  PubMed  Google Scholar 

  37. Grinan-Ferre C, Izquierdo V, Otero E, Puigoriol-Illamola D, Corpas R, Sanfeliu C, et al. Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. Front Cell Neurosci. 2018;12:224.

    PubMed  PubMed Central  Google Scholar 

  38. Gelinas JN, Banko JL, Hou L, Sonenberg N, Weeber EJ, Klann E, et al. ERK and mTOR signaling couple beta-adrenergic receptors to translation initiation machinery to gate induction of protein synthesis-dependent long-term potentiation. J Biol Chem. 2007;282:27527–35.

    CAS  PubMed  Google Scholar 

  39. Qian H, Matt L, Zhang M, Nguyen M, Patriarchi T, Koval OM, et al. beta2-Adrenergic receptor supports prolonged theta tetanus-induced LTP. J Neurophysiol. 2012;107:2703–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Maity S, Jarome TJ, Blair J, Lubin FD, Nguyen PV. Noradrenaline goes nuclear: epigenetic modifications during long-lasting synaptic potentiation triggered by activation of beta-adrenergic receptors. J Physiol. 2016;594:863–81.

    CAS  PubMed  Google Scholar 

  41. Cutuli D, Landolfo E, Petrosini L, Gelfo F. Environmental enrichment effects on the brain-derived neurotrophic factor expression in healthy condition, Alzheimer’s disease, and other neurodegenerative disorders. J Alzheimer’s Dis. 2022;85:975–92.

    CAS  Google Scholar 

  42. Azman KF, Zakaria R. Recent advances on the role of brain-derived neurotrophic factor (BDNF) in neurodegenerative diseases. Int J Mol Sci. 2022;23(12):6827.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature. 2008;455:411–5.

    CAS  PubMed  Google Scholar 

  44. Han TK, Leem YH, Kim HS. Treadmill exercise restores high fat diet-induced disturbance of hippocampal neurogenesis through beta2-adrenergic receptor-dependent induction of thioredoxin-1 and brain-derived neurotrophic factor. Brain Res. 2019;1707:154–63.

    CAS  PubMed  Google Scholar 

  45. de Sousa Fernandes MS, Santos GCJ, Filgueira TO, Gomes DA, Barbosa EAS, Dos Santos TM, et al. Cytokines and immune cells profile in different tissues of rodents induced by environmental enrichment: systematic review. Int J Mol Sci. 2022;23(19):11986.

    PubMed  PubMed Central  Google Scholar 

  46. O’Neill E, Yssel JD, McNamara C, Harkin A. Pharmacological targeting of beta2 -adrenoceptors is neuroprotective in the LPS inflammatory rat model of Parkinson’s disease. Br J Pharmacol. 2020;177:282–97.

    PubMed  Google Scholar 

  47. Maity S, Farrell K, Navabpour S, Narayanan SN, Jarome TJ. Epigenetic mechanisms in memory and cognitive decline associated with aging and Alzheimer’s disease. Int J Mol Sci. 2021;22(22):12280.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Su Q, Li T, He PF, Lu XC, Yu Q, Gao QC, et al. Trichostatin A ameliorates Alzheimer’s disease-related pathology and cognitive deficits by increasing albumin expression and Abeta clearance in APP/PS1 mice. Alzheimer’s Res Ther. 2021;13(1):7.

    CAS  Google Scholar 

  49. Burns AM, Farinelli-Scharly M, Hugues-Ascery S, Sanchez-Mut JV, Santoni G, Graff J. The HDAC inhibitor CI-994 acts as a molecular memory aid by facilitating synaptic and intracellular communication after learning. Proc Natl Acad Sci USA. 2022;119(22):e2116797119.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krishna K, Behnisch T, Sajikumar S. Inhibition of histone deacetylase 3 restores amyloid-beta oligomer-induced plasticity deficit in hippocampal CA1 pyramidal neurons. J Alzheimer’s Dis. 2016;51:783–91.

    CAS  Google Scholar 

  51. Han Y, Chen L, Liu J, Chen J, Wang C, Guo Y, et al. A class I HDAC inhibitor rescues synaptic damage and neuron loss in APP-transfected cells and APP/PS1 mice through the GRIP1/AMPA pathway. Molecules. 2022;27(13):4160.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang Y, Li K, Li X, Xu L, Yang Z. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem-Biol Interact. 2021;341:109452.

    CAS  PubMed  Google Scholar 

  53. Takasu K, Niidome K, Hasegawa M, Ogawa K. Histone deacetylase inhibitor improves the dysfunction of hippocampal gamma oscillations and fast spiking interneurons in Alzheimer’s disease model mice. Front Mol Neurosci. 2021;14:782206.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. De Simone A, Milelli A. Histone deacetylase inhibitors as multitarget ligands: new players in Alzheimer’s disease drug discovery? ChemMedChem. 2019;14:1067–73.

    PubMed  Google Scholar 

  55. Teijido O, Cacabelos R. Pharmacoepigenomic interventions as novel potential treatments for Alzheimer’s and Parkinson’s diseases. Int J Mol Sci. 2018;19(10):3199.

    PubMed  PubMed Central  Google Scholar 

  56. Hess L, Moos V, Lauber AA, Reiter W, Schuster M, Hartl N, et al. A toolbox for class I HDACs reveals isoform specific roles in gene regulation and protein acetylation. PLoS Genet. 2022;18(8):e1010376.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pyo S, Kim J, Hwang J, Heo JH, Kim K, Cho SR. Environmental enrichment and estrogen upregulate beta-hydroxybutyrate underlying functional improvement. Front Mol Neurosci. 2022;15:869799.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nott A, Cheng J, Gao F, Lin YT, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sada N, Fujita Y, Mizuta N, Ueno M, Furukawa T, Yamashita T. Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death Dis. 2020;11(8):655.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Behl T, Kaur I, Sehgal A, Singh S, Makeen HA, Albratty M, et al. The Locus Coeruleus - Noradrenaline system: looking into Alzheimer’s therapeutics with rose coloured glasses. Biomed Pharmacother Biomed Pharmacother. 2022;151:113179.

    CAS  PubMed  Google Scholar 

  61. Mravec B, Lejavova K, Cubinkova V. Locus (coeruleus) minoris resistentiae in pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 2014;11:992–1001.

    CAS  PubMed  Google Scholar 

  62. Manaye KF, Mouton PR, Xu G, Drew A, Lei DL, Sharma Y, et al. Age-related loss of noradrenergic neurons in the brains of triple transgenic mice. Age (Dordr). 2013;35:139–47.

    CAS  PubMed  Google Scholar 

  63. Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J Neurosci. 2006;26:467–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chhatar S, Lal G. Role of adrenergic receptor signalling in neuroimmune communication. Curr Res Immunol. 2021;2:202–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Paspalas CD, Papadopoulos GC. Ultrastructural evidence for combined action of noradrenaline and vasoactive intestinal polypeptide upon neurons, astrocytes, and blood vessels of the rat cerebral cortex. Brain Res Bull. 1998;45:247–59.

    CAS  PubMed  Google Scholar 

  66. Chai GS, Wang YY, Zhu D, Yasheng A, Zhao P. Activation of beta2-adrenergic receptor promotes dendrite ramification and spine generation in APP/PS1 mice. Neurosci Lett. 2017;636:158–64.

    CAS  PubMed  Google Scholar 

  67. Wu Q, Sun JX, Song XH, Wang J, Xiong CQ, Teng FX, et al. Blocking beta 2-adrenergic receptor inhibits dendrite ramification in a mouse model of Alzheimer’s disease. Neural Regenerat Res. 2017;12:1499–506.

    CAS  Google Scholar 

  68. Branca C, Wisely EV, Hartman LK, Caccamo A, Oddo S. Administration of a selective beta2 adrenergic receptor antagonist exacerbates neuropathology and cognitive deficits in a mouse model of Alzheimer’s disease. Neurobiol aging. 2014;35:2726–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kolmus K, Tavernier J, Gerlo S. beta2-Adrenergic receptors in immunity and inflammation: stressing NF-kappaB. Brain Behav Immun. 2015;45:297–310.

    CAS  PubMed  Google Scholar 

  70. Sharma M, Arbabzada N, Flood PM. Mechanism underlying beta2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. J Neuroimmunol. 2019;332:37–48.

    CAS  PubMed  Google Scholar 

  71. Ryan KJ, Griffin E, Yssel JD, Ryan KM, McNamee EN, Harkin A, et al. Stimulation of central beta2-adrenoceptors suppresses NFkappaB activity in rat brain: a role for IkappaB. Neurochem Int. 2013;63:368–78.

    CAS  PubMed  Google Scholar 

  72. Yang CX, Bao F, Zhong J, Zhang L, Deng LB, Sha Q, et al. The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction. Eur Rev Med Pharmacol Sci. 2020;24:10194–202.

    PubMed  Google Scholar 

  73. Dobarro M, Gerenu G, Ramirez MJ. Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer’s transgenic mice. Int J Neuropsychopharmacol. 2013;16:2245–57.

    CAS  PubMed  Google Scholar 

  74. Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, et al. Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med. 2006;12:1390–6.

    CAS  PubMed  Google Scholar 

  75. Wang D, Fu Q, Zhou Y, Xu B, Shi Q, Igwe B, et al. beta2 adrenergic receptor, protein kinase A (PKA) and c-Jun N-terminal kinase (JNK) signaling pathways mediate tau pathology in Alzheimer disease models. J Biol Chem. 2013;288:10298–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu NN, Wang XX, Yu JT, Wang ND, Lu RC, Miao D, et al. Blocking beta2-adrenergic receptor attenuates acute stress-induced amyloid beta peptides production. Brain Res. 2010;1317:305–10.

    CAS  PubMed  Google Scholar 

  77. Wu H, Wei S, Huang Y, Chen L, Wang Y, Wu X, et al. Abeta monomer induces phosphorylation of Tau at Ser-214 through beta2AR-PKA-JNK signaling pathway. FASEB J: Off Publ Fed Am Soc Exp Biol. 2020;34:5092–105.

    CAS  Google Scholar 

  78. Larsson SC, Markus HS. Does treating vascular risk factors prevent dementia and Alzheimer’s disease? A systematic review and meta-analysis. J Alzheimer’s Dis. 2018;64:657–68.

    Google Scholar 

  79. Tan ECK, Qiu C, Liang Y, Wang R, Bell JS, Fastbom J, et al. Antihypertensive medication regimen intensity and incident dementia in an older population. J Am Med Dir Assoc. 2018;19:577–83.

    PubMed  Google Scholar 

  80. Khachaturian AS, Zandi PP, Lyketsos CG, Hayden KM, Skoog I, Norton MC, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol. 2006;63:686–92.

    PubMed  Google Scholar 

  81. Feldstein CA. Association between chronic blood pressure changes and development of Alzheimer’s disease. J Alzheimer’s Dis. 2012;32:753–63.

    Google Scholar 

  82. Lennon MJ, Makkar SR, Crawford JD, Sachdev PS. Midlife hypertension and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimer’s Dis. 2019;71:307–16.

    Google Scholar 

  83. Nielson KA, Jensen RA. Beta-adrenergic receptor antagonist antihypertensive medications impair arousal-induced modulation of working memory in elderly humans. Behav Neural Biol. 1994;62:190–200.

    CAS  PubMed  Google Scholar 

  84. Gliebus G, Lippa CF. The influence of beta-blockers on delayed memory function in people with cognitive impairment. Am J Alzheimer’s Dis Dement. 2007;22:57–61.

    Google Scholar 

  85. Steinman MA, Zullo AR, Lee Y, Daiello LA, Boscardin WJ, Dore DD, et al. Association of beta-blockers with functional outcomes, death, and rehospitalization in older nursing home residents after acute myocardial infarction. JAMA Intern Med. 2017;177:254–62.

    PubMed  PubMed Central  Google Scholar 

  86. Feng H, Wang C, He W, Wu X, Li S, Zeng Z, et al. Roflumilast ameliorates cognitive impairment in APP/PS1 mice via cAMP/CREB/BDNF signaling and anti-neuroinflammatory effects. Metab Brain Dis. 2019;34:583–91.

    CAS  PubMed  Google Scholar 

  87. Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF, et al. The phosphodiesterase-4 inhibitor rolipram reverses Abeta-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol. 2012;15:749–66.

    CAS  PubMed  Google Scholar 

  88. Kelly MP. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell Signal. 2018;42:281–91.

    CAS  PubMed  Google Scholar 

  89. Martel G, Millard A, Jaffard R, Guillou JL. Stimulation of hippocampal adenylyl cyclase activity dissociates memory consolidation processes for response and place learning. Learn Mem. 2006;13:342–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Xiong WX, Zhou GX, Wang B, Xue ZG, Wang L, Sun HC, et al. Impaired spatial learning and memory after sevoflurane-nitrous oxide anesthesia in aged rats is associated with down-regulated cAMP/CREB signaling. PloS One. 2013;8(11):e79408.

    PubMed  PubMed Central  Google Scholar 

  91. Counts SE, Mufson EJ. Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J Neurochem. 2010;113:649–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA. 2010;107:6058–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hutten DR, Bos JHJ, de Vos S, Hak E. Targeting the beta-2-adrenergic receptor and the risk of developing Alzheimer’s disease: a retrospective inception cohort study. J Alzheimer’s Dis. 2022;87:1089–101.

    CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH grants P01AG015379 (DJS), and R01AG006173, the Davis Amyloid Prevention Program (DJS) and support (to SL) from the Massachusetts Alzheimer’s Disease Research Center (5P50 AG 005134). Support to DZ from Henan Key Laboratory of Neural Regeneration and Neurorestoration (HNSJXF-2021-001). We also thank Dr. Yang K Xiang (University of California Davis) for providing β2-AR knockout mice and Dr. Andrew Stern for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

MJ, ZW, NR, MX, and SL conducted the research, WL was responsible for preparing the human AD brain extract. AX, XY, and QS assisted in the analysis of the data. JZ and DZ supervised the collection and quality control of cytokine data. SL drafted the initial version of the paper; SL and DJS designed the research and supervised the study procedures. All authors participated in reviewing and editing the manuscript.

Corresponding author

Correspondence to Shaomin Li.

Ethics declarations

Competing interests

DJS is a Director and provides consulting to Prothena Biosciences and has served on an advisory board for Eisai. All other authors declare no competing financial or non-financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Wei, Z., Ramalingam, N. et al. Activation of β2-adrenergic receptors prevents AD-type synaptotoxicity via epigenetic mechanisms. Mol Psychiatry 28, 4877–4888 (2023). https://doi.org/10.1038/s41380-023-02145-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02145-5

Search

Quick links