Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line

Abstract

Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ICM exposure causes concentration-dependent NF-κB p65 activation in LUHMES cells.
Fig. 2: ICM selectively alters cytokine receptor expression in LUHMES cells.
Fig. 3: ICM decreases neurite outgrowth and increases apoptosis on D3.
Fig. 4: ICM decreases neurite outgrowth and increases apoptosis on D6.
Fig. 5: ICM decreases synaptic puncta.

Similar content being viewed by others

Data availability

The data sets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Boulanger-Bertolus J, Pancaro C, Mashour GA. Increasing role of maternal immune activation in neurodevelopmental disorders. Front Behav Neurosci. 2018;12:230. http://www.ncbi.nlm.nih.gov/pubmed/30344483.

    Article  CAS  Google Scholar 

  2. Scola G, Duong A. Prenatal maternal immune activation and brain development with relevance to psychiatric disorders. Neuroscience. 2017;346:403–8. https://doi.org/10.1016/j.neuroscience.2017.01.033.

  3. Spencer SJ, Meyer U. Perinatal programming by inflammation. Brain Behav Immun. 2017;63:1–7. https://doi.org/10.1016/j.bbi.2017.02.007.

  4. Li YM, Ou JJ, Liu L, Zhang D, Zhao JP, Tang SY. Association between maternal obesity and autism spectrum disorder in offspring: a meta-analysis. J Autism Dev Disord. 2016;46:95–102.

  5. Kong L, Norstedt G, Schalling M, Gissler M, Lavebratt C. The risk of offspring psychiatric disorders in the setting of maternal obesity and diabetes. Pediatrics. 2018;142:e20180776. https://doi.org/10.1542/peds.2018-0776.

    Article  PubMed  Google Scholar 

  6. Atladottir HO, Pedersen MG, Thorsen P, Mortensen PB, Deleuran B, Eaton WW, et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics. 2009;124:687–94. https://doi.org/10.1542/peds.2008-2445.

    Article  PubMed  Google Scholar 

  7. Croen LA, Qian Y, Ashwood P, Daniels JL, Fallin D, Schendel D, et al. Family history of immune conditions and autism spectrum and developmental disorders: findings from the study to explore early development. Autism Res. 2018;1–14. http://www.ncbi.nlm.nih.gov/pubmed/30095240.

  8. Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn. 2018;247:588–619.

    Article  Google Scholar 

  9. Gumusoglu SB, Stevens HE. Maternal inflammation and neurodevelopmental programming: a review of preclinical outcomes and implications for translational psychiatry. Biol Psychiatry. 2019;85:107–21. https://linkinghub.elsevier.com/retrieve/pii/S0006322318317803.

  10. Gilman SE, Hornig M, Ghassabian A, Hahn J, Cherkerzian S, Albert PS, et al. Socioeconomic disadvantage, gestational immune activity, and neurodevelopment in early childhood. Proc Natl Acad Sci. 2017;114:201617698. https://doi.org/10.1073/pnas.1617698114.

    Article  CAS  Google Scholar 

  11. Dozmorov MG, Bilbo SD, Kollins SH, Zucker N, Do EK, Schechter JC, et al. Associations between maternal cytokine levels during gestation and measures of child cognitive abilities and executive functioning. Brain Behav Immun. 2018;70:390–7. https://doi.org/10.1016/j.bbi.2018.03.029.

  12. Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res. 2001;47:27–36.

    Article  CAS  Google Scholar 

  13. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–9. http://www.ncbi.nlm.nih.gov/pubmed/26822608.

    Article  CAS  Google Scholar 

  14. Careaga M, Taylor SL, Chang C, Chiang A, Ku KM, Berman RF, et al. Variability in PolyIC induced immune response: Implications for preclinical maternal immune activation models. J Neuroimmunol. 2018;323:87–93. https://doi.org/10.1016/j.jneuroim.2018.06.014.

  15. Garay PA, Hsiao EY, Patterson PH, McAllister AK. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun. 2013;31:54–68. https://doi.org/10.1016/j.bbi.2012.07.008.

  16. Nawa H, Takei N. Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res. 2006;56:2–13.

    Article  CAS  Google Scholar 

  17. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702. https://doi.org/10.1523/JNEUROSCI.2178-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang NM, Cowan M, Moonah SN, Petri WA. The impact of systemic inflammation on neurodevelopment. Trends Mol Med. 2018;24:794–804. http://www.ncbi.nlm.nih.gov/pubmed/30006148.

    Article  CAS  Google Scholar 

  19. Garay PA, McAllister AK. Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci. 2010;2:1–16.

    Article  Google Scholar 

  20. Stolp HB. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Mol Cell Neurosci. 2013;53:63–8. https://doi.org/10.1016/j.mcn.2012.08.009.

  21. Guidolin D, Fede C, Tortorella C. Nerve cells developmental processes and the dynamic role of cytokine signaling. Int J Dev Neurosci. 2018;1–15. https://doi.org/10.1016/j.ijdevneu.2018.11.003.

  22. Ma L, Li X-W, Zhang S-J, Yang F, Zhu G-M, Yuan X-B, et al. Interleukin-1 beta guides the migration of cortical neurons. J Neuroinflammation. 2014;11:114. http://www.jcasonline.com/text.asp?2012/5/1/30/94338.

    Article  Google Scholar 

  23. Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO. Tumor necrosis factor-α modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells. 2008;26:2361–71. https://doi.org/10.1634/stemcells.2007-0914.

    Article  CAS  Google Scholar 

  24. Hama T, Kushima Y, Miyamoto M, Kubota M, Takei N, Hatanaka H. Interleukin-6 improves the survival of mesencephalic catecholaminergic and septal cholinergic neurons from postnatal, two-week-old rats in cultures. Neuroscience. 1991;40:445–52. http://www.ncbi.nlm.nih.gov/pubmed/2027469.

    Article  CAS  Google Scholar 

  25. McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM. Tumor necrosis factor α is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol. 2001;169:219–30.

    Article  CAS  Google Scholar 

  26. Ahn J, Lee J, Kim S. Interferon-gamma inhibits the neuronal differentiation of neural progenitor cells by inhibiting the expression of Neurogenin2 via the JAK/STAT1 pathway. Biochem Biophys Res Commun. 2015;466:52–9. https://doi.org/10.1016/j.bbrc.2015.08.104.

  27. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde Y-A. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci. 2002;22:854–62.

    Article  CAS  Google Scholar 

  28. Kim I-J, Beck HN, Lein PJ, Higgins D. Interferon γ induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci. 2002;22:4530–9. http://www.jneurosci.org/content/22/11/4530.abstract.

    Article  CAS  Google Scholar 

  29. Vikman KS, Owe-Larsson B, Brask J, Kristensson KS, Hill RH. Interferon-gamma-induced changes in synaptic activity and AMPA receptor clustering in hippocampal cultures. Brain Res. 2001;896:18–29. http://www.ncbi.nlm.nih.gov/pubmed/11277968.

    Article  CAS  Google Scholar 

  30. Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8:52. http://www.ncbi.nlm.nih.gov/pubmed/21595886.

    Article  CAS  Google Scholar 

  31. Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharm. 2004;500:399–411.

    Article  CAS  Google Scholar 

  32. Nadeem A, Ahmad SF, Al-Harbi NO, Fardan AS, El-Sherbeeny AM, Ibrahim KE, et al. IL-17A causes depression-like symptoms via NFκB and p38MAPK signaling pathways in mice: implications for psoriasis associated depression. Cytokine. 2017;97:14–24. https://doi.org/10.1016/j.cyto.2017.05.018.

  33. Kern JK, Geier DA, King PG, Sykes LK, Mehta JA, Geier MR. Shared brain connectivity issues, symptoms, and comorbidities in autism spectrum disorder, attention deficit/hyperactivity disorder, and tourette syndrome. Brain Connect. 2015;5:321–35. https://doi.org/10.1089/brain.2014.0324.

    Article  PubMed  Google Scholar 

  34. Smith DE, Ketchem RR, Moore H, Anderson Z, Renshaw BR, Friend DJ, et al. A single amino acid difference between human and monkey interleukin (IL)-1β dictates effective binding to soluble type II IL-1 receptor. J Biol Chem. 2002;277:47619–25.

    Article  CAS  Google Scholar 

  35. Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem. 2006;281:13964–71.

    Article  CAS  Google Scholar 

  36. Sheng WS, Hu S, Ni HT, Rowen TN, Lokensgard JR, Peterson PK. TNF-alpha-induced chemokine production and apoptosis in human neural precursor cells. J Leukoc Biol. 2005;78:1233–41. http://www.ncbi.nlm.nih.gov/pubmed/16314440.

    Article  CAS  Google Scholar 

  37. Kim M, Jung K, Kim IS, Lee IS, Ko Y, Shin JE, et al. TNF-α induces human neural progenitor cell survival after oxygen-glucose deprivation by activating the NF-κB pathway. Exp Mol Med. 2018;50:1–14. https://doi.org/10.1038/s12276-018-0033-1.

  38. Tong Z-B, Hogberg H, Kuo D, Sakamuru S, Xia M, Smirnova L, et al. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening. J Appl Toxicol. 2017;37:167–80. http://www.ncbi.nlm.nih.gov/pubmed/27143523.

    Article  CAS  Google Scholar 

  39. Stiegler NV, Krug AK, Matt F, Leist M. Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci. 2011;121:73–87.

    Article  CAS  Google Scholar 

  40. Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, et al. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci. 2005;25:6329–42. https://doi.org/10.1523/JNEUROSCI.1746-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scholz D, Pöltl D, Genewsky A, Weng M, Waldmann T, Schildknecht S, et al. Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem. 2011;119:957–71.

    Article  CAS  Google Scholar 

  42. Jones KL, Croen LA, Yoshida CK, Heuer L, Hansen R, Zerbo O, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry. 2017;22:273–9. https://doi.org/10.1038/mp.2016.77.

  43. Krug AK, Balmer NV, Matt F, Schönenberger F, Merhof D, Leist M. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol. 2013;87:2215–31.

    Article  CAS  Google Scholar 

  44. Meyer U. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci. 2006;26:4752–62. https://doi.org/10.1523/JNEUROSCI.0099-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao Z, Tanaka M, Regnier C, Rothe M, Yamit-hezi A, Woronicz JD, et al. NF-kappa B activation by tumor necrosis factor and interleukin-1. Cold Spring Harb Symp Quant Biol. 1999;64:473–83. http://www.ncbi.nlm.nih.gov/pubmed/11232324.

    Article  CAS  Google Scholar 

  46. Mattson MP, Meffert MK. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ. 2006;13:852–60.

    Article  CAS  Google Scholar 

  47. Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans J-P, et al. Image-based profiling of synaptic connectivity in primary neuronal cell culture. Front Neurosci. 2018;12:389. http://www.ncbi.nlm.nih.gov/pubmed/29997468.

    Article  Google Scholar 

  48. Harrill JA, Robinette BL, Mundy WR. Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicol Vitr. 2011;25:368–87.

  49. Arsenault D, St-Amour I, Cisbani G, Rousseau LS, Cicchetti F. The different effects of LPS and poly I: C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun. 2014;38:77–90. https://doi.org/10.1016/j.bbi.2013.12.016.

  50. Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 2011;25:604–15. https://doi.org/10.1016/j.bbi.2010.12.017.

  51. Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res. 2002;69:94–103.

    Article  CAS  Google Scholar 

  52. Dawes BE, Gao J, Atkins C, Nelson JT, Johnson K, Wu P, et al. Human neural stem cell-derived neuron/astrocyte co-cultures respond to La Crosse virus infection with proinflammatory cytokines and chemokines. J Neuroinflammation. 2018;15:315.

  53. Guang S, Pang N, Deng X, Yang L, He F, Wu L, et al. Synaptopathology involved in autism spectrum disorder. Front Cell Neurosci. 2018;12:470. http://www.ncbi.nlm.nih.gov/pubmed/30627085.

    Article  CAS  Google Scholar 

  54. Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental disorders. Prog Neuro Psychopharmacol Biol Psychiatry. 2018;84:328–42. https://doi.org/10.1016/j.pnpbp.2017.09.014.

  55. de Bartolomeis A, Latte G, Tomasetti C, Iasevoli F. Glutamatergic postsynaptic density protein dysfunctions in synaptic plasticity and dendritic spines morphology: relevance to schizophrenia and other behavioral disorders pathophysiology, and implications for novel therapeutic approaches. Mol Neurobiol. 2014;49:484–511. http://www.ncbi.nlm.nih.gov/pubmed/23999870.

    Article  Google Scholar 

  56. Coley AA, Gao WJ. PSD95: a synaptic protein implicated in schizophrenia or autism? Prog Neuro Psychopharmacol Biol Psychiatry. 2018;82:187–94. https://doi.org/10.1016/j.pnpbp.2017.11.016.

  57. Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis. 2009;35:219–33. https://doi.org/10.1016/j.nbd.2009.05.001.

  58. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73. http://www.ncbi.nlm.nih.gov/pubmed/10632234.

    Article  CAS  Google Scholar 

  59. Martínez-Cerdeño V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev Neurobiol. 2017;77:393–404.

    Article  Google Scholar 

  60. Coiro P, Padmashri R, Suresh A, Spartz E, Pendyala G, Chou S, et al. Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain Behav Immun. 2015;50:249–58. https://doi.org/10.1016/j.bbi.2015.07.022.

  61. Wei H, Alberts I, Li X. The apoptotic perspective of autism. Int J Dev Neurosci. 2014;36:13–8. https://doi.org/10.1016/j.ijdevneu.2014.04.004.

  62. Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res. 2006;81:47–63. http://www.ncbi.nlm.nih.gov/pubmed/16226876.

    Article  Google Scholar 

  63. Yamaguchi Y, Miura M. Programmed cell death in neurodevelopment. Dev Cell. 2015;32:478–90. https://doi.org/10.1016/j.devcel.2015.01.019.

  64. Dong D, Zielke HR, Yeh D, Yang P. Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder. Autism Res. 2018;11:1076–90.

    Article  Google Scholar 

  65. MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal. 2002;14:477–92. http://www.ncbi.nlm.nih.gov/pubmed/11897488.

    Article  CAS  Google Scholar 

  66. Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol. 2016;116:1–10. https://doi.org/10.1016/j.bcp.2016.03.009.

  67. Mémet S. NF-κB functions in the nervous system: from development to disease. Biochem Pharmacol. 2006;72:1180–95.

    Article  Google Scholar 

  68. Boersma MCH, Dresselhaus EC, De Biase LM, Mihalas AB, Bergles DE, Meffert MK. A requirement for nuclear factor- b in developmental and plasticity-associated synaptogenesis. J Neurosci. 2011;31:5414–25. https://doi.org/10.1523/JNEUROSCI.2456-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meyer U, Engler A, Weber L, Schedlowski M, Feldon J. Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience. 2008;154:701–9. https://doi.org/10.1016/j.neuroscience.2008.04.031.

  70. Vuillermot S, Weber L, Feldon J, Meyer U. A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci. 2010;30:1270–87.

    Article  CAS  Google Scholar 

  71. Pavăl D. A dopamine hypothesis of autism spectrum disorder. Dev Neurosci. 2017;39:355–60. http://www.ncbi.nlm.nih.gov/pubmed/28750400.

    Article  Google Scholar 

  72. Yang AC, Tsai S-J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 2017;18. http://www.ncbi.nlm.nih.gov/pubmed/28771182.

  73. Lee S, Rudd S, Gratten J, Visscher PM, Prins JB, Dawson PA. Gene networks associated with non-syndromic intellectual disability. J Neurogenet. 2018;32:6–14. https://doi.org/10.1080/01677063.2017.1404058.

  74. Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol. 2013;36:3–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Environmental Health Sciences (grants P01 ES011269 and P30 ES023513) and the United States Environmental Protection Agency (grant R83543201). This research used the Biological Analysis Core of the UC Davis MIND Institute Intellectual and Developmental Disabilities Research Center (U54 HD079125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Lein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matelski, L., Morgan, R.K., Grodzki, A.C. et al. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol Psychiatry 26, 875–887 (2021). https://doi.org/10.1038/s41380-020-0647-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0647-2

This article is cited by

Search

Quick links