Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Isocitrate dehydrogenase mutations are associated with altered IL-1β responses in acute myeloid leukemia

Abstract

Mutations in isocitrate dehydrogenase 2 (IDH2) have been noted to impact cellular differentiation in addition to DNA and histone methylation. However, little is known about the impact of IDH2 mutations on intracellular signaling. Using an isogenic cell line model, we investigated both differentiation and signaling responses in IDH2 mutant cells and show augmented responses to inflammatory immune ligands. Using phospho-specific flow and mass cytometry, we demonstrate IDH2 mutant cells were significantly more sensitive to IL-1β at multiple downstream readouts. Further, bulk RNA sequencing confirmed increases in cytokine-related signaling pathways and NF-κB target genes. Single-cell RNA sequencing of unstimulated and stimulated cells confirmed altered IL-1β transcriptional responses in the IDH2 mutant cells. Targeted inhibition of the IKK complex reduced IL-1β responses and induced cell death in primary IDH-mutated leukemia samples. Together, these results confirm altered IL-1β signaling in IDH2 mutant cells and identify this pathway as a potential therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IDH2R140Q induces alterations in immunophenotype that are  changed by enasidenib treatment.
Fig. 2: IDH2R140Q cells possess enhanced IL-1β-induced signaling responses.
Fig. 3: Bulk RNAseq identifies immune signaling changes in IDH2R140Q cells.
Fig. 4: scRNA-seq of IL-1β-stimulated cells confirms transcriptional NF-κB targets in IDH2R140Q compared to IDH2WT.
Fig. 5: Inhibition of the IKK complex blocks IL-1β signaling in both IDH2WT and IDH2R140Q cells.
Fig. 6: Inhibition of NF-κB in primary mIDH1/2 AML samples blocks IL-1β and TNFα signaling and induces apoptosis.
Fig. 7: Ex vivo treatment of IDH-mutated AML leads to shift in signaling profile and enrichment of primitive subsets.

Similar content being viewed by others

Data availability

RNA sequencing data are available in Gene Expression Omnibus (GEO) under accession number GSE186759 (Fig. 3) and GSE187777 (Fig. 4 and Supplementary Fig. 4). Mass cytometry data are available in flowrepository.org (ID FR-FCM-Z4M9 for data demonstrated in Fig. 1, Supplementary Fig. 1, Fig. 2A–D, and Supplementary Fig. 2A; ID FR-FCM-Z4MC for data demonstrated in Fig. 2E and Supplementary Fig. 2D; and ID FR-FCM-Z4MD for data demonstrated in Fig. 7) and all flow cytometry data are available upon request.

References

  1. Kotecha N, Flores NJ, Irish JM, Simonds EF, Sakai DS, Archambeault S, et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell. 2008;14:335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Padron E, Painter JS, Kunigal S, Mailloux AW, McGraw K, McDaniel JM, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood 2013;121:5068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Villaume MT, Arrate MP, Ramsey HE, Sunthankar KI, Jenkins MT, Moyo TK, et al. The delta isoform of PI3K predominates in chronic myelomonocytic leukemia and can be targeted effectively with umbralisib and ruxolitinib. Exp Hematol. 2021;97:57–65.e5.

  4. Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia 2014;28:1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu Q, Li Y, Lv N, Jing Y, Xu Y, Li Y, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: a systematic review and meta-analysis. Clin Cancer Res. 2017;23:4511–22.

  6. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 2017;31:272–81.

    Article  CAS  PubMed  Google Scholar 

  7. Losman JA, Koivunen P, Kaelin WG Jr. 2-Oxoglutarate-dependent dioxygenases in cancer. Nat Rev Cancer. 2020;20:710–26.

    Article  CAS  PubMed  Google Scholar 

  8. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339:1621–5.

  9. Garrett-Bakelman FE, Melnick AM. Mutant IDH: a targetable driver of leukemic phenotypes linking metabolism, epigenetics and transcriptional regulation. Epigenomics 2016;8:945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yaqub F. Inhibition of mutant IDH1 in acute myeloid leukaemia. Lancet Oncol. 2015;16:e9.

    Article  PubMed  Google Scholar 

  11. Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong WJ, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abegunde SO, Buckstein R, Wells RA, Rauh MJ. An inflammatory environment containing TNFalpha favors Tet2-mutant clonal hematopoiesis. Exp Hematol. 2018;59:60–5.

    Article  CAS  PubMed  Google Scholar 

  13. Cull AH, Snetsinger B, Buckstein R, Wells RA, Rauh MJ. Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol. 2017;55:56–70 e13.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 2015;525:389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017;355:842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud O, Gjertsen BT, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 2004;118:217–28.

    Article  CAS  PubMed  Google Scholar 

  18. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015;162:184–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8–15.

    Article  CAS  PubMed  Google Scholar 

  20. Carey A, Edwards DKT, Eide CA, Newell L, Traer E, Medeiros BC, et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep. 2017;18:3204–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hosseini MM, Kurtz SE, Abdelhamed S, Mahmood S, Davare MA, Kaempf A, et al. Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia. 2018;32:2374–87.

  22. Mitchell K, Barreyro L, Todorova TI, Taylor SJ, Antony-Debre I, Narayanagari SR, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018;215:1709–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beverly LJ, Starczynowski DT. IRAK1: oncotarget in MDS and AML. Oncotarget 2014;5:1699–700.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, et al. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med. 2019;11:eaaw8828.

  25. Bosman MC, Schuringa JJ, Vellenga E. Constitutive NF-kappaB activation in AML: causes and treatment strategies. Crit Rev Oncol Hematol. 2016;98:35–44.

    Article  PubMed  Google Scholar 

  26. Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E. Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 2004;18:103–12.

    Article  CAS  PubMed  Google Scholar 

  27. Wei TW, Wu PY, Wu TJ, Hou HA, Chou WC, Teng CJ, et al. Aurora A and NF-kappaB survival pathway drive chemoresistance in acute myeloid leukemia via the TRAF-interacting protein TIFA. Cancer Res. 2017;77:494–508.

    Article  CAS  PubMed  Google Scholar 

  28. Haimovici A, Humbert M, Federzoni EA, Shan-Krauer D, Brunner T, Frese S, et al. PU.1 supports TRAIL-induced cell death by inhibiting NF-kappaB-mediated cell survival and inducing DR5 expression. Cell Death Differ. 2017;24:866–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen JY, Lai YS, Tsai HJ, Kuo CC, Yen BL, Yeh SP, et al. The oncometabolite R-2-hydroxyglutarate activates NF-kappaB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells. Sci Rep. 2016;6:32428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Earl DC, Ferrell PB Jr, Leelatian N, Froese JT, Reisman BJ, Irish JM, et al. Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat Commun. 2018;9:39.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    Article  CAS  PubMed  Google Scholar 

  32. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

    Article  CAS  PubMed  Google Scholar 

  35. Wolock SL, Krishnan I, Tenen DE, Matkins V, Camacho V, Patel S, et al. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 2019;28:302–11 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12:44–73.

    Article  CAS  PubMed  Google Scholar 

  37. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. 2021;184:3573–87.e29.

  38. Amatangelo MD, Quek L, Shih A, Stein EM, Roshal M, David MD, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood 2017;130:732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cull AH, Snetsinger B, Buckstein R, Wells RA, Rauh MJ. Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol. 2017;55:56–70.e13.

    Article  CAS  PubMed  Google Scholar 

  40. Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S, Palam LR, et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell. 2018;23:833–49.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cesano A, Rosen DB, O’Meara P, Putta S, Gayko U, Spellmeyer DC, et al. Functional pathway analysis in acute myeloid leukemia using single cell network profiling assay: effect of specimen source (bone marrow or peripheral blood) on assay readouts. Cytom B Clin Cytom. 2012;82:158–72.

    Article  Google Scholar 

  42. Han L, Qiu P, Zeng Z, Jorgensen JL, Mak DH, Burks JK, et al. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytom A 2015;87:346–56.

    Article  CAS  Google Scholar 

  43. Gilmore TD. NF-kB Target Genes, 2021. https://www.bu.edu/nf-kb/gene-resources/target-genes/2021.

  44. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161:1187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–D503.

    CAS  PubMed  Google Scholar 

  46. Ganan-Gomez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 2015;29:1458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood 2018;132:1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ivy KS, Ferrell PB Jr. Disordered immune regulation and its therapeutic targeting in myelodysplastic syndromes. Curr Hematol Malig Rep. 2018;13:244–55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee SC, North K, Kim E, Jang E, Obeng E, Lu SX, et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell. 2018;34:225–41 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 2019;21:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li S, Chen X, Wang J, Meydan C, Glass JL, Shih AH, et al. Somatic mutations drive specific, but reversible, epigenetic heterogeneity states in AML. Cancer Discov. 2020;10:1934–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Passegué MY. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell. 2019;25:357–72.e7.

  54. Richardson LG, Choi BD, Curry WT. (R)-2-hydroxyglutarate drives immune quiescence in the tumor microenvironment of IDH-mutant gliomas. Transl Cancer Res. 2019;8(Suppl 2):S167–S70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest. 2017;127:1425–37.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang FMK, DiNardo CD, Furudate K, Tanaka T, Yan Y, Patel KP, et al. Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nat Commun. 2021;12:2607.

Download references

Acknowledgements

This study was supported by NHLBI K23HL138291 (PBF), R01HL150078 (RSW), and 1PO1HL131477 (RSW), Vanderbilt Ingram Cancer Center. We acknowledge the support of the Vanderbilt Flow Cytometry Shared Resource and Creative Data Solutions Shared Resource, specifically J.P. Cartailler.

Author information

Authors and Affiliations

Authors

Contributions

KIS and PBF conceived and designed the study. KIS, MTJ, CHC, and SBP collected the data presented. KIS, MTJ, RSW, and PBF analyzed and interpreted results. KIS and PBF prepared this manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to P. Brent Ferrell.

Ethics declarations

Competing interests

PBF has received research funding from Incyte, Forma Therapeutics, and Astex Pharmaceuticals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunthankar, K.I., Jenkins, M.T., Cote, C.H. et al. Isocitrate dehydrogenase mutations are associated with altered IL-1β responses in acute myeloid leukemia. Leukemia 36, 923–934 (2022). https://doi.org/10.1038/s41375-021-01487-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01487-9

Search

Quick links