Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

The future of noninvasive neonatal brain assessment: the measure of cerebral blood flow by diffuse correlation spectroscopy in combination with near-infrared spectroscopy oximetry

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hoffman SB, Lakhani A, Viscardi RM The association between carbon dioxide, cerebral blood flow, and autoregulation in the premature infant. J Perinatol. 2020. https://doi.org/10.1038/s41372-020-00835-4.

  2. Brazy JE, Lewis DV, Mitnick MH, Jöbsis vander Vliet FF. Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations. Pediatrics. 1985;75:217–25.

    Article  CAS  Google Scholar 

  3. la Cour A, Greisen G, Hyttel-Sorensen S. In vivo validation of cerebral near-infrared spectroscopy: a review. Neurophotonics. 2018;5:040901.

    PubMed  PubMed Central  Google Scholar 

  4. Alderliesten T, De Vis JB, Lemmers PM, Hendrikse J, Groenendaal F, van Bel F, et al. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy. J Cereb Blood Flow Metab. 2017;37:902–13.

    Article  CAS  Google Scholar 

  5. Andresen B, De Carli A, Fumagalli M, Giovannella M, Durduran T, Michael Weigel U, et al. Cerebral oxygenation and blood flow in normal term infants at rest measured by a hybrid near-infrared device (BabyLux). Pediatr Res. 2019;86:515–21.

    Article  CAS  Google Scholar 

  6. Carp SA, Farzam P, Redes N, Hueber DM, Franceschini MA. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis. Biomed Opt Express. 2017;8:3993–4006.

    Article  CAS  Google Scholar 

  7. Sutin J, Zimmerman B, Tyulmankov D, Tamborini D, Wu KC, Selb J, et al. Time-domain diffuse correlation spectroscopy. Optica. 2016;3:1006–13.

    Article  CAS  Google Scholar 

  8. Colombo L, Pagliazzi M, Sekar SKV, Contini D, Mora AD, Spinelli L, et al. Effects of the instrument response function and the gate width in time-domain diffuse correlation spectroscopy: model and validations. Neurophotonics. 2019;6:035001.

    Article  Google Scholar 

  9. Carp S, Tamborini D, Mazumder D, Wu KC, Robinson M, Stephens K, et al. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. J Biomed Opt. 2020;25:097003.

    Article  CAS  Google Scholar 

  10. Frijia EM, Billing A, Lloyd-Fox S, Vidal Rosas E, Collins-Jones L, Crespo-Llado MM, et al. Functional imaging of the developing brain with wearable high-density diffuse optical tomography: A new benchmark for infant neuroimaging outside the scanner environment. Neuroimage 2021;225:117490.

    Article  CAS  Google Scholar 

  11. Roberts SB, Franceschini MA, Silver RE, Taylor SF, de Sa AB, Có R. Effects of food supplementation on cognitive function, cerebral blood flow, and nutritional status in young children at risk of undernutrition: randomized controlled trial. BMJ. 2020;370:m2397.

    Article  Google Scholar 

  12. Demené C, Mairesse J, Baranger J, Tanter M, Baud O. Ultrafast Doppler for neonatal brain imaging. Neuroimage. 2019;185:851–56.

    Article  Google Scholar 

  13. De Vis JB, Alderliesten T, Hendrikse J, Petersen ET, Benders MJ. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates: a review. Pediatr Res. 2016;80:641–50.

    Article  CAS  Google Scholar 

  14. Andersen JB, Lindberg U, Olesen OV, Benoit D, Ladefoged CN, Larsson HB, et al. Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using 15O-water PET. J Cereb Blood Flow Metab. 2019;39:782–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ferrari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, M., Quaresima, V. The future of noninvasive neonatal brain assessment: the measure of cerebral blood flow by diffuse correlation spectroscopy in combination with near-infrared spectroscopy oximetry. J Perinatol 41, 2690–2691 (2021). https://doi.org/10.1038/s41372-021-00996-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-00996-w

This article is cited by

Search

Quick links