Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics

Abstract

MicroRNAs (miRNAs) are effective regulators of gene expression that have a significant role in the pathogenesis of prostate and various other cancers. The high prevalence of aberrant miRNA expression in prostate cancer, and miRNAs' distinctive properties, give much hope that they can be used as biomarkers and next generation of molecular anticancer therapeutics. Herein, we review the literature on miRNA involvement in prostate cancer pathogenesis and the current understanding of their role as oncogenes, tumor suppressors and metastasis-regulators. We also review the latest research on miRNAs in prostate cancer preclinical studies and clinical trials, and highlight the advantages and challenges of possible miRNA-based therapies. The emerging information regarding the biology of miRNAs in prostate cancer is promising, and may lead to a role(s) for these molecules as diagnostic/prognostic markers and effective therapeutic tools for better molecularly targeted treatment of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  2. Lytle JR, Yario TA, Steitz JA . Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA 2007; 104: 9667–9672.

    Article  CAS  Google Scholar 

  3. Duursma AM, Kedde M, Schrier M, le SC, Agami R . miR-148 targets human DNMT3b protein coding region. RNA 2008; 14: 872–877.

    Article  CAS  Google Scholar 

  4. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R et al. Transcriptional control of gene expression by microRNAs. Cell 2010; 140: 111–122.

    Article  CAS  Google Scholar 

  5. Gonzalez S, Pisano DG, Serrano M . Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 2008; 7: 2601–2608.

    Article  CAS  Google Scholar 

  6. Kim DH, Saetrom P, Snove Jr O, Rossi JJ . MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 2008; 105: 16230–16235.

    Article  CAS  Google Scholar 

  7. Orom UA, Nielsen FC, Lund AH . MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30: 460–471.

    Article  Google Scholar 

  8. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  Google Scholar 

  9. Kozomara A, Griffiths-Jones S . miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39 (Database issue): D152–D157.

    Article  CAS  Google Scholar 

  10. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  Google Scholar 

  11. Betel D, Wilson M, Gabow A, Marks DS, Sander C . The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36 (Database issue): D149–D153.

    CAS  PubMed  Google Scholar 

  12. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  Google Scholar 

  13. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  Google Scholar 

  14. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP . MicroRNAs in plants. Genes Dev 2002; 16: 1616–1626.

    Article  CAS  Google Scholar 

  15. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  Google Scholar 

  16. Xu P, Vernooy SY, Guo M, Hay BA . The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13: 790–795.

    Article  CAS  Google Scholar 

  17. Bueno MJ, Pérez de Castro I, Malumbres M . Control of cell proliferation pathways by microRNAs. Cell Cycle 2008; 7: 3143–3148.

    Article  CAS  Google Scholar 

  18. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Møller S, Trapman J et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2011 (e-pub ahead of print 18 July 2011).

  19. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008; 68: 6162–6170.

    Article  CAS  Google Scholar 

  20. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . MicroRNA expression profiling in prostate cancer. Cancer Res 2007; 67: 6130–6135.

    Article  CAS  Google Scholar 

  21. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010; 126: 1166–1176.

    CAS  Google Scholar 

  22. Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 2009; 16: 206–216.

    Article  CAS  Google Scholar 

  23. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  24. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011; 30: 4231–4242.

    Article  CAS  Google Scholar 

  25. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513–10518.

    Article  CAS  Google Scholar 

  26. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007; 13: 1668–1674.

    Article  CAS  Google Scholar 

  27. Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ . miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 2009; 284: 24696–24704.

    Article  CAS  Google Scholar 

  28. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695–1699.

    Article  CAS  Google Scholar 

  29. Yang K, Handorean AM, Iczkowski KA . MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol 2009; 2: 361–369.

    CAS  PubMed  Google Scholar 

  30. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 2009; 28: 1714–1724.

    Article  CAS  Google Scholar 

  31. Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 2008; 3: e4029.

    Article  Google Scholar 

  32. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271–1277.

    Article  CAS  Google Scholar 

  33. Mihelich BL, Khramtsova EA, Arva N, Vaishnav A, Johnson DN, Giangreco AA et al. The miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. J Biol Chem 2011; 286: 44503–44511.

    Article  CAS  Google Scholar 

  34. Viticchie G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011; 10: 1121–1131.

    Article  CAS  Google Scholar 

  35. Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M et al. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 2009; 69: 2287–2295.

    Article  CAS  Google Scholar 

  36. Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 2009; 28: 3360–3370.

    Article  CAS  Google Scholar 

  37. Hurst DR, Edmonds MD, Welch DR . Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 2009; 69: 7495–7498.

    Article  CAS  Google Scholar 

  38. Watahiki A, Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M et al. MicroRNAs associated with metastatic prostate cancer. PLoS One 2011; 6: e24950.

    Article  CAS  Google Scholar 

  39. Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 2011; 29: 265–269.

    Article  CAS  Google Scholar 

  40. Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 2011; 350: 207–213.

    Article  CAS  Google Scholar 

  41. Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D et al. Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 2011; 6: e20341.

    Article  CAS  Google Scholar 

  42. Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer 2011; 106: 405–413.

    Article  Google Scholar 

  43. Lin SL, Chiang A, Chang D, Ying SY . Loss of mir-146a function in hormone-refractory prostate cancer. RNA 2008; 14: 417–424.

    Article  CAS  Google Scholar 

  44. Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Camara-Lopes LH et al. MicroRNA expression profiles in the progression of prostate cancer-from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol 2011 (e-pub ahead of print 29 August 2011).

  45. Huang Q, Gumireddy K, Schrier M, le SC, Nagel R, Nair S et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10: 202–210.

    Article  CAS  Google Scholar 

  46. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2010; 18: 181–187.

    Article  CAS  Google Scholar 

  47. Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE . MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 2009; 26: 965–979.

    Article  CAS  Google Scholar 

  48. Schramedei K, Morbt N, Pfeifer G, Lauter J, Rosolowski M, Tomm JM et al. MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 2011; 30: 2975–2985.

    Article  CAS  Google Scholar 

  49. Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2009; 27: 1712–1721.

    Article  CAS  Google Scholar 

  50. Steele R, Mott JL, Ray RB . MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer 2010; 1: 381–387.

    Article  CAS  Google Scholar 

  51. Saini S, Majid S, Yamamura S, Tabatabai ZL, Suh SO, Shahryari V et al. Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res 2011; 17: 5287–5298.

    Article  CAS  Google Scholar 

  52. Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y et al. MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 2010; 116: 5637–5649.

    Article  CAS  Google Scholar 

  53. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008; 377: 114–119.

    Article  CAS  Google Scholar 

  54. Gordanpour A, Stanimirovic A, Nam RK, Moreno CS, Sherman C, Sugar L et al. miR-221 Is Down-regulated in TMPRSS2:ERG Fusion-positive Prostate Cancer. Anticancer Res 2011; 31: 403–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Spahn M, Kneitz S, Scholz CJ, Stenger N, Rudiger T, Strobel P et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 2010; 127: 394–403.

    CAS  PubMed  Google Scholar 

  56. Musiyenko A, Bitko V, Barik S . Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med 2008; 86: 313–322.

    Article  CAS  Google Scholar 

  57. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    Article  CAS  Google Scholar 

  58. Huang Y, Zou Q, Song H, Song F, Wang L, Zhang G et al. A study of miRNAs targets prediction and experimental validation. Protein Cell 2010; 1: 979–986.

    Article  CAS  Google Scholar 

  59. Seto AG . The road toward microRNA therapeutics. Int J Biochem Cell Biol 2010; 42: 1298–1305.

    Article  CAS  Google Scholar 

  60. Kasinski AL, Slack FJ . MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11: 849–864.

    Article  CAS  Google Scholar 

  61. Garzon R, Marcucci G, Croce CM . Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9: 775–789.

    Article  CAS  Google Scholar 

  62. Petrocca F, Lieberman J . Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 2011; 29: 747–754.

    Article  CAS  Google Scholar 

  63. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010; 70: 5923–5930.

    Article  CAS  Google Scholar 

  64. McLaughlin J, Cheng D, Singer O, Lukacs RU, Radu CG, Verma IM et al. Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proc Natl Acad Sci USA 2007; 104: 20501–20506.

    Article  CAS  Google Scholar 

  65. Bader AG, Brown D, Winkler M . The promise of microRNA replacement therapy. Cancer Res 2010; 70: 7027–7030.

    Article  CAS  Google Scholar 

  66. Zuhorn IS, Engberts JB, Hoekstra D . Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur Biophys J 2007; 36: 349–362.

    Article  CAS  Google Scholar 

  67. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537–541.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Canadian Cancer Society Research Institute (grant no. 019038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Seth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordanpour, A., Nam, R., Sugar, L. et al. MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics. Prostate Cancer Prostatic Dis 15, 314–319 (2012). https://doi.org/10.1038/pcan.2012.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2012.3

Keywords

This article is cited by

Search

Quick links