Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity

Abstract

The attachment of cell-surface carbohydrates to proteins mediated by the amino acids serine or threonine (O-glycan) is involved in tumor metastasis; the roles of O-glycans vary depending on their structure, but the detailed mechanisms by which O-glycans trigger signaling to control tumor metastasis are largely unknown. In this study, we found that the reduced expression of core 3 synthase correlated with metastasis to lymph nodes and distant organs, resulting in poor prognosis for colorectal cancer (CRC) patients. Mechanically, we revealed that mucin-type core 3 O-glycan was synthesized at the membrane-tethered MUC1 N terminus because of core 3 synthase expression in colon cancer cells. This further inhibited the translocation of MUC1-C to the nucleus, initiated p53 gene transcription that was dependent on the inhibition of MUC1-C nucleus translocation, activated p53-mediated miR-200c expression and resulted in mesenchymal–epithelial transition (MET). Inhibition of MUC1 via small interfering RNA (siRNA) in re-expressed core 3 synthase colon cancer cells further inhibited MUC1-C nucleus translocation, increased p53 and miR-200c expression, and enhanced MET. However, inhibition of p53 via siRNA or miR-200c via miR-200c inhibitor in re-expressed core 3 synthase colon cancer cells promoted the epithelial–mesenchymal transition (EMT) in a reversible manner. Core 3 synthase mRNA levels and the p53 mRNA levels or miR-200c levels in the colon cancerous samples were positively correlated. Our findings suggest a novel mechanism linking mucin-type core 3 O-glycan to the EMT–MET plasticity of CRC cells via MUC1/p53/miR-200c-dependent signaling cascade and shed light on therapeutic strategies to treat this malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, Andrews KS et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin 2008; 58: 130–160.

    Article  Google Scholar 

  2. Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 2006; 131: 830–840.

    Article  CAS  Google Scholar 

  3. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial–mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  4. Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 2013; 62: 1315–1326.

    Article  CAS  Google Scholar 

  5. Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT, Aziz K et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol 2014; 204: 839–856.

    Article  CAS  Google Scholar 

  6. Puisieux A, Brabletz T, Caramel J . Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16: 488–494.

    Article  CAS  Google Scholar 

  7. Tsuboi S, Hatakeyama S, Ohyama C, Fukuda M . Two opposing roles of O-glycans in tumor metastasis. Trends Mol Med 2012; 18: 224–232.

    Article  CAS  Google Scholar 

  8. Springer SA, Gagneux P . Glycomics: revealing the dynamic ecology and evolution of sugar molecules. J Proteomics 2016; 135: 90–100.

    Article  CAS  Google Scholar 

  9. Moran AP, Gupta A, Joshi L . Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 2011; 60: 1412–1425.

    Article  CAS  Google Scholar 

  10. Iwai T, Inaba N, Naundorf A, Zhang Y, Gotoh M, Iwasaki H et al. Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3- N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J Biol Chem 2002; 277: 12802–12809.

    Article  CAS  Google Scholar 

  11. Iwai T, Kudo T, Kawamoto R, Kubota T, Togayachi A, Hiruma T et al. Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc Natl Acad Sci USA 2005; 102: 4572–4577.

    Article  CAS  Google Scholar 

  12. Radhakrishnan P, Grandgenett PM, Mohr AM, Bunt SK, Yu F, Chowdhury S et al. Expression of core 3 synthase in human pancreatic cancer cells suppresses tumor growth and metastasis. Int J Cancer 2013; 133: 2824–2833.

    CAS  PubMed  Google Scholar 

  13. Bergstrom K, Fu J, Johansson ME, Liu X, Gao N, Wu Q et al. Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol 2017; 10: 91–103.

    Article  CAS  Google Scholar 

  14. Gao N, Bergstrom K, Fu J, Xie B, Chen W, Xia L . Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am J Physiol Gastrointest Liver Physiol 2016; 311: G74–G83.

    Article  Google Scholar 

  15. Pinho SS, Reis CA . Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015; 15: 540–555.

    Article  CAS  Google Scholar 

  16. Dimitroff CJ . Galectin-binding O-glycosylations as regulators of malignancy. Cancer Res 2015; 75: 3195–3202.

    Article  CAS  Google Scholar 

  17. Du J, Hong S, Dong L, Cheng B, Lin L, Zhao B et al. Dynamic sialylation in transforming growth factor-beta (TGF-beta)-induced epithelial to mesenchymal transition. J Biol Chem 2015; 290: 12000–12013.

    Article  CAS  Google Scholar 

  18. Lu J, Isaji T, Im S, Fukuda T, Hashii N, Takakura D et al. Beta-galactoside alpha2,6-sialyltranferase 1 promotes transforming growth factor-beta-mediated epithelial–mesenchymal transition. J Biol Chem 2014; 289: 34627–34641.

    Article  Google Scholar 

  19. Tagde A, Rajabi H, Bouillez A, Alam M, Gali R, Bailey S et al. MUC1-C drives MYC in multiple myeloma. Blood 2016; 127: 2587–2597.

    Article  CAS  Google Scholar 

  20. Kufe D . Oncogenic function of the MUC1 receptor subunit in gene regulation. Oncogene 2010; 29: 5663–5666.

    Article  CAS  Google Scholar 

  21. Wei X, Xu H, Kufe D . Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res 2007; 67: 1853–1858.

    Article  CAS  Google Scholar 

  22. Kuan SF, Byrd JC, Basbaum C, Kim YS . Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells. J Biol Chem 1989; 264: 19271–19277.

    CAS  PubMed  Google Scholar 

  23. Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K et al. Defective intestinal mucin-type O-glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology 2016; 151: 152–164 e111.

    Article  CAS  Google Scholar 

  24. Tran DT, Ten Hagen KG . Mucin-type O-glycosylation during development. J Biol Chem 2013; 288: 6921–6929.

    Article  CAS  Google Scholar 

  25. Rao X, Duan X, Mao W, Li X, Li Z, Li Q et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun 2015; 6: 8468.

    Article  CAS  Google Scholar 

  26. Freire-de-Lima L, Gelfenbeyn K, Ding Y, Mandel U, Clausen H, Handa K et al. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial–mesenchymal transition process. Proc Natl Acad Sci USA 2011; 108: 17690–17695.

    Article  CAS  Google Scholar 

  27. Byrd JC, Bresalier RS . Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 2004; 23: 77–99.

    Article  CAS  Google Scholar 

  28. Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 2011; 30: 1449–1459.

    Article  CAS  Google Scholar 

  29. Ponnusamy MP, Lakshmanan I, Jain M, Das S, Chakraborty S, Dey P et al. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 2010; 29: 5741–5754.

    Article  CAS  Google Scholar 

  30. Park JH, Katagiri T, Chung S, Kijima K, Nakamura Y . Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin. Neoplasia 2011; 13: 320–326.

    Article  CAS  Google Scholar 

  31. Ye J, Pan Q, Shang Y, Wei X, Peng Z, Chen W et al. Core 2 mucin-type O-glycan inhibits EPEC or EHEC O157:H7 invasion into HT-29 epithelial cells. Gut Pathog 2015; 7: 31.

    Article  Google Scholar 

  32. Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL, Steentoft C et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc Natl Acad Sci USA 2014; 111: E4066–E4075.

    Article  CAS  Google Scholar 

  33. Lee SH, Hatakeyama S, Yu SY, Bao X, Ohyama C, Khoo KH et al. Core3 O-glycan synthase suppresses tumor formation and metastasis of prostate carcinoma PC3 and LNCaP cells through down-regulation of alpha2beta1 integrin complex. J Biol Chem 2009; 284: 17157–17169.

    Article  CAS  Google Scholar 

  34. Macao B, Johansson DG, Hansson GC, Hard T . Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat Struct Mol Biol 2006; 13: 71–76.

    Article  CAS  Google Scholar 

  35. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13: 317–323.

    Article  CAS  Google Scholar 

  36. Chou CH, Huang MJ, Chen CH, Shyu MK, Huang J, Hung JS et al. Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget 2015; 6: 6123–6135.

    PubMed  PubMed Central  Google Scholar 

  37. Singh PK, Hollingsworth MA . Cell surface-associated mucins in signal transduction. Trends Cell Biol 2006; 16: 467–476.

    Article  CAS  Google Scholar 

  38. Lillehoj EP, Kim H, Chun EY, Kim KC . Pseudomonas aeruginosa stimulates phosphorylation of the airway epithelial membrane glycoprotein Muc1 and activates MAP kinase. Am J Physiol Lung Cell Mol Physiol 2004; 287: L809–L815.

    Article  CAS  Google Scholar 

  39. Tian Y, Pan Q, Shang Y, Zhu R, Ye J, Liu Y et al. MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): impact on the epithelial–mesenchymal transition in colon cancer cells. J Biol Chem 2014; 289: 36101–36115.

    Article  CAS  Google Scholar 

  40. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H et al. Epithelial–to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527: 525–530.

    Article  CAS  Google Scholar 

  41. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 2015; 525: 256–260.

    Article  CAS  Google Scholar 

  42. Yang Y, Ahn YH, Gibbons DL, Zang Y, Lin W, Thilaganathan N et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest 2011; 121: 1373–1385.

    Article  CAS  Google Scholar 

  43. Pan Q, Tian Y, Li X, Ye J, Liu Y, Song L et al. Enhanced membrane-tethered mucin 3 (MUC3) expression by a tetrameric branched peptide with a conserved TFLK motif inhibits bacteria adherence. J Biol Chem 2013; 288: 5407–5416.

    Article  CAS  Google Scholar 

  44. Gabriel M, Zentner A . Sodium dodecyl sulfate agarose gel electropheresis and electroelution of high molecular weight human salivary mucin. Clin Oral Investig 2005; 9: 284–286.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the following awards: 81500410 (to YT), 81170340 and 81372557 (to RW) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Wei, X., Shang, Y. et al. Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity. Oncogene 36, 6391–6407 (2017). https://doi.org/10.1038/onc.2017.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.241

This article is cited by

Search

Quick links