Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness

Abstract

OCT4 (Octamer-binding transcription factor 4) is essential for embryonic stem cell self-renewal. Here we show that OCT4 increases the aggressiveness of high-grade serous ovarian cancer (HG-SOC) by inactivating the Retinoblastoma tumor suppressor pathway and enhancing mitotic stability in cancer cells. OCT4 drives the expression of Nuclear Inhibitor of Protein Phosphatase type 1 (NIPP1) and Cyclin F (CCNF) that together inhibit Protein Phosphatase 1 (PP1). This results in pRB hyper-phosphorylation, accelerated cell proliferation and increased in vitro tumorigenicity of ovarian cancer cells. In parallel, OCT4 and NIPP1/CCNF drive the expression of the central Chromosomal Passenger Complex (CPC) components, Borealin, Survivin and the mitotic kinase Aurora B, promoting the clustering of supernumerary centrosomes to increase mitotic stability. Loss of OCT4 or NIPP1/CCNF results in severe mitotic defects, multipolar spindles and supernumerary centrosomes, finally leading to the induction of apoptosis. These phenotypes were recapitulated in different cancer models indicating general relevance for human cancer. Importantly, activation of these parallel pathways leads to dramatically reduced overall survival of HG-SOC patients. Altogether, our data highlights an unprecedented role for OCT4 as central regulator of mitotic fidelity and RB tumor suppressor pathway activity. Disrupting this pathway represents a promising strategy to target an aggressive subpopulation of HG-SOC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tantin D . Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140: 2857–2866.

    Article  CAS  Google Scholar 

  2. Gidekel S, Pizov G, Bergman Y, Pikarsky E . Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 2003; 4: 361–370.

    Article  CAS  Google Scholar 

  3. Hochedlinger K, Yamada Y, Beard C, Jaenisch R . Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005; 121: 465–477.

    Article  CAS  Google Scholar 

  4. Darini CY, Pisani DF, Hofman P, Pedeutour F, Sudaka I, Chomienne C et al. Self-renewal gene tracking to identify tumour-initiating cells associated with metastatic potential. Oncogene 2012; 31: 2438–2449.

    Article  CAS  Google Scholar 

  5. Zhao P, Liu C, Xu K, Zheng S, Li H, Xu Y et al. [Expression of OCT4 protein in bladder cancer and its clinicopathological implications]. Nan Fang Yi Ke Da Xue Xue Bao 2012; 32: 643–646.

    CAS  PubMed  Google Scholar 

  6. Huang P, Chen J, Wang L, Na Y, Kaku H, Ueki H et al. Implications of transcriptional factor, OCT-4, in human bladder malignancy and tumor recurrence. Med Oncol 2012; 29: 829–834.

    Article  CAS  Google Scholar 

  7. Chen Z, Wang T, Cai L, Su C, Zhong B, Lei Y et al. Clinicopathological significance of non-small cell lung cancer with high prevalence of Oct-4 tumor cells. J Exp Clin Cancer Res 2012; 31: 10.

    Article  Google Scholar 

  8. Chen Y-C, Hsu H-S, Chen Y-W, Tsai T-H, How C-K, Wang C-Y et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE 2008; 3: e2637.

    Article  Google Scholar 

  9. Hu L, McArthur C, Jaffe RB . Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 2010; 102: 1276–1283.

    Article  CAS  Google Scholar 

  10. Vathipadiekal V, Saxena D, Mok SC, Hauschka P V, Ozbun L, Birrer MJ . Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer. PLoS ONE 2012; 7: e29079.

    Article  CAS  Google Scholar 

  11. Levings PP, McGarry S V, Currie TP, Nickerson DM, McClellan S, Ghivizzani SC et al. Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res 2009; 69: 5648–5655.

    Article  CAS  Google Scholar 

  12. Koo BS, Lee SH, Kim JM, Huang S, Kim SH, Rho YS et al. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene 2015; 34: 2317–2324.

    Article  CAS  Google Scholar 

  13. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S . Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 2008; 68: 6533–6540.

    Article  CAS  Google Scholar 

  14. Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 2010; 52: 528–539.

    Article  CAS  Google Scholar 

  15. Linn DE, Yang X, Sun F, Xie Y, Chen H, Jiang R et al. A role for OCT4 in tumor initiation of drug-resistant prostate cancer cells. Genes Cancer 2010; 1: 908–916.

    Article  CAS  Google Scholar 

  16. Dai X, Ge J, Wang X, Qian X, Zhang C, Li X . OCT4 regulates epithelial-mesenchymal transition and its knockdown inhibits colorectal cancer cell migration and invasion. Oncol Rep 2013; 29: 155–160.

    Article  CAS  Google Scholar 

  17. Zhang J, Li Y-L, Zhou C-Y, Hu Y-T, Chen H-Z . Expression of octamer-4 in serous and mucinous ovarian carcinoma. J Clin Pathol 2010; 63: 879–883.

    Article  Google Scholar 

  18. Bapat SA, Mali AM, Koppikar CB, Kurrey NK . Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 2005; 65: 3025–3029.

    Article  CAS  Google Scholar 

  19. Gao M-Q, Choi Y-P, Kang S, Youn JH, Cho N-H . CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 2010; 29: 2672–2680.

    Article  CAS  Google Scholar 

  20. Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS ONE 2012; 7: e46858.

    Article  CAS  Google Scholar 

  21. Schoeftner S, Scarola M, Comisso E, Schneider C, Benetti R . An Oct4-pRb axis, controlled by MiR-335, integrates stem cell self-renewal and cell cycle control. Stem Cells 2013; 31: 717–728.

    Article  CAS  Google Scholar 

  22. Amato A, Lentini L, Schillaci T, Iovino F, Di Leonardo A . RNAi mediated acute depletion of retinoblastoma protein (pRb) promotes aneuploidy in human primary cells via micronuclei formation. BMC Cell Biol 2009; 10: 79.

    Article  Google Scholar 

  23. Iovino F, Lentini L, Amato A, Di Leonardo A . RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer 2006; 5: 38.

    Article  Google Scholar 

  24. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145: 435–446.

    Article  CAS  Google Scholar 

  25. Schvartzman J-M, Duijf PHG, Sotillo R, Coker C, Benezra R . Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 2011; 19: 701–714.

    Article  CAS  Google Scholar 

  26. Manning AL, Longworth MS, Dyson NJ . Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 2010; 24: 1364–1376.

    Article  CAS  Google Scholar 

  27. Mitra AK, Davis DA, Tomar S, Roy L, Gurler H, Xie J et al. In vivo tumor growth of high-grade serous ovarian cancer cell lines. Gynecol Oncol 2015; 138: 372–377.

    Article  CAS  Google Scholar 

  28. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004; 3: 1427–1438.

    CAS  Google Scholar 

  29. Dean JL, Thangavel C, McClendon AK, Reed CA, Knudsen ES . Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene 2010; 29: 4018–4032.

    Article  CAS  Google Scholar 

  30. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res 2011; 17: 1591–1602.

    Article  CAS  Google Scholar 

  31. Michaud K, Solomon DA, Oermann E, Kim J-S, Zhong W-Z, Prados MD et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 2010; 70: 3228–3238.

    Article  CAS  Google Scholar 

  32. Ngan VK, Bellman K, Hill BT, Wilson L, Jordan MA . Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol Pharmacol 2001; 60: 225–232.

    Article  CAS  Google Scholar 

  33. Carmena M, Wheelock M, Funabiki H, Earnshaw WC . The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 2012; 13: 789–803.

    Article  CAS  Google Scholar 

  34. Hirota T, Lipp JJ, Toh B-H, Peters J-M . Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 2005; 438: 1176–1180.

    Article  CAS  Google Scholar 

  35. van der Horst A, Lens SMA . Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 2014; 123: 25–42.

    Article  Google Scholar 

  36. Sugiyama K, Sugiura K, Hara T, Sugimoto K, Shima H, Honda K et al. Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene 2002; 21: 3103–3111.

    Article  CAS  Google Scholar 

  37. Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S et al. Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2010; 2: 33ra38.

    Article  Google Scholar 

  38. Liedtke S, Stephan M, Kögler G . Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 2008; 389: 845–850.

    Article  CAS  Google Scholar 

  39. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  40. Weinberg RA . The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  CAS  Google Scholar 

  41. Yu JJ, Zhou LD, Zhao TT, Bai W, Zhou J, Zhang W . Knockdown of Aurora-B inhibits the growth of non-small cell lung cancer A549 cells. Oncol Lett 2015; 10: 1642–1648.

    Article  CAS  Google Scholar 

  42. Wilkinson RW, Odedra R, Heaton SP, Wedge SR, Keen NJ, Crafter C et al. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 2007; 13: 3682–3688.

    Article  CAS  Google Scholar 

  43. Kim H-J, Cho JH, Quan H, Kim J-R . Down-regulation of Aurora B kinase induces cellular senescence in human fibroblasts and endothelial cells through a p53-dependent pathway. FEBS Lett 2011; 585: 3569–3576.

    Article  CAS  Google Scholar 

  44. Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 2010; 17: 376–387.

    Article  CAS  Google Scholar 

  45. Lieman JH, Worley LA, Harbour JW . Loss of Rb-E2F repression results in caspase-8-mediated apoptosis through inactivation of focal adhesion kinase. J Biol Chem 2005; 280: 10484–10490.

    Article  CAS  Google Scholar 

  46. Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D et al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther 2011; 10: 325–335.

    Article  CAS  Google Scholar 

  47. Desjardins M, Xie J, Gurler H, Muralidhar GG, Sacks JD, Burdette JE et al. Versican regulates metastasis of epithelial ovarian carcinoma cells and spheroids. J Ovarian Res 2014; 7: 70.

    Article  Google Scholar 

  48. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol 2014; 33: 306–312.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Angelica Feresin and Simone Pisano (University of Udine, Italy) for helping with processing of patient samples and with spindle defects experiments. EC and MS are AIRC post-doctoral fellows. MR is enrolled in the PhD program for Molecular Medicine at the University of Trieste. This work was supported by an AIRC grant (Rif 17756 to RB and Rif 10299 to SS), a financial support by the Rotary Club Bari Sud to RB and a grant from the Italian Ministry of Education, Universities and Research (MIUR) CTN01_00177_817708 to CS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Schoeftner or R Benetti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comisso, E., Scarola, M., Rosso, M. et al. OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness. Oncogene 36, 4253–4266 (2017). https://doi.org/10.1038/onc.2017.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.20

This article is cited by

Search

Quick links