Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of Kras activation and Pten deletion alone or in combination on MUC1 biology and epithelial-to-mesenchymal transition in ovarian cancer

Abstract

Mucin1 (MUC1) is an epithelial glycoprotein overexpressed in ovarian cancer and actively involved in tumor cell migration and metastasis. Using novel in vitro and in vivo MUC1-expressing conditional (Cre-loxP) ovarian tumor models, we focus here on MUC1 biology and the roles of Kras activation and Pten deletion during cell transformation and epithelial-to-mesenchymal transition (EMT). We generated several novel murine ovarian cancer cell lines derived from the ovarian surface epithelia (OSE) of mice with conditional mutations in Kras, Pten or both. In addition, we also generated several tumor-derived new cell lines that reproduce the original tumor phenotype in vivo and mirror late stage metastatic disease. Our results demonstrate that de novo activation of oncogenic Kras does not trigger increased proliferation, cellular transformation or EMT, and prevents MUC1 upregulation. In contrast, Pten deletion accelerates cell proliferation, triggers cellular transformation in vitro and in vivo, and stimulates MUC1 expression. Ovarian tumor-derived cell lines MKP-Liver and MKP-Lung cells reproduce in vivo EMT and represent the first immune competent mouse model for distant hematogenous spread. Whole genome microarray expression analysis using tumor and OSE-derived cell lines reveal a 121 gene signature associated with EMT and metastasis. When applied to n=542 cases from The Cancer Genome Atlas (TCGA) ovarian cancer dataset, the gene signature identifies a patient subset with decreased survival (P=0.04). Using an extensive collection of novel murine cell lines we have identified distinct roles for Kras and Pten on MUC1 and EMT in vivo and in vitro. The data has implications for future design of combination therapies targeting Kras mutations, Pten deletions and MUC1 vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Nick AM, Coleman RL, Ramirez PT, Sood AK . A framework for a personalized surgical approach to ovarian cancer. Nat Rev Clin Oncol 2015; 12: 239–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA . Ovarian cancer. Lancet 2014; 384: 1376–1388.

    Article  PubMed  Google Scholar 

  3. Cormio G, Rossi C, Cazzolla A, Resta L, Loverro G, Greco P et al. Distant metastases in ovarian carcinoma. Int J Gynecol Cancer 2003; 13: 125–129.

    Article  CAS  PubMed  Google Scholar 

  4. Dauplat J, Hacker NF, Nieberg RK, Berek JS, Rose TP, Sagae S . Distant metastases in epithelial ovarian carcinoma. Cancer 1987; 60: 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  5. Kerr VE, Cadman E . Pulmonary metastases in ovarian cancer. Analysis of 357 patients. Cancer 1985; 56: 1209–1213.

    Article  CAS  PubMed  Google Scholar 

  6. Davidson B, Trope CG, Reich R . Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol 2012; 2: 33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Deng J, Wang L, Chen H, Li L, Ma Y, Ni J et al. The role of tumour-associated MUC1 in epithelial ovarian cancer metastasis and progression. Cancer Metastasis Rev 2013; 32: 535–551.

    Article  CAS  PubMed  Google Scholar 

  8. Dong Y, Walsh MD, Cummings MC, Wright RG, Khoo SK, Parsons PG et al. Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J Pathol 1997; 183: 311–317.

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Ma J, Liu F, Yu Q, Chu G, Perkins AC et al. Expression of MUC1 in primary and metastatic human epithelial ovarian cancer and its therapeutic significance. Gynecol Oncol 2007; 105: 695–702.

    Article  CAS  PubMed  Google Scholar 

  10. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ . MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 2004; 82: 249–293.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Vlad A, Milcarek C, Finn OJ . Human mucin MUC1 RNA undergoes different types of alternative splicing resulting in multiple isoforms. Cancer Immunol Immunother 2013; 62: 423–435.

    Article  CAS  PubMed  Google Scholar 

  12. McDermott KM, Crocker PR, Harris A, Burdick MD, Hinoda Y, Hayashi T et al. Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int J Cancer 2001; 94: 783–791.

    Article  CAS  PubMed  Google Scholar 

  13. Besmer DM, Curry JM, Roy LD, Tinder TL, Sahraei M, Schettini J et al. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Res 2011; 71: 4432–4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamamoto M, Bharti A, Li Y, Kufe D . Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J Biol Chem 1997; 272: 12492–12494.

    Article  CAS  PubMed  Google Scholar 

  15. Carson DD . The cytoplasmic tail of MUC1: a very busy place. Sci Signal 2008; 1: pe35.

    Article  PubMed  Google Scholar 

  16. Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. Am J Surg Pathol 2007; 31: 161–169.

    Article  PubMed  Google Scholar 

  17. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  18. Mizuuchi H, Mori Y, Sato K, Kamiya H, Okamura N, Nasim S et al. High incidence of point mutation in K-ras codon 12 in carcinoma of the fallopian tube. Cancer 1995; 76: 86–90.

    Article  CAS  PubMed  Google Scholar 

  19. Roh MH, Yassin Y, Miron A, Mehra KK, Mehrad M, Monte NM et al. High-grade fimbrial-ovarian carcinomas are unified by altered p53, PTEN and PAX2 expression. Mod Pathol 2010; 23: 1316–1324.

    Article  CAS  PubMed  Google Scholar 

  20. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 1995; 64: 280–285.

    Article  CAS  PubMed  Google Scholar 

  21. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21: 99–102.

    Article  CAS  PubMed  Google Scholar 

  22. Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 1998; 58: 2095–2097.

    CAS  PubMed  Google Scholar 

  23. Huang J, Zhang L, Greshock J, Colligon TA, Wang Y, Ward R et al. Frequent genetic abnormalities of the PI3K/AKT pathway in primary ovarian cancer predict patient outcome. Genes Chromosomes Cancer 2011; 50: 606–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 2001; 98: 1176–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T . Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 2005; 11: 63–70.

    Article  CAS  PubMed  Google Scholar 

  26. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK et al. The soft agar colony formation assay. J Vis Exp 2014; (92):e51998.

  27. Budiu RA, Elishaev E, Brozick J, Lee M, Edwards RP, Kalinski P et al. Immunobiology of human mucin 1 in a preclinical ovarian tumor model. Oncogene 2013; 32: 3664–3675.

    Article  CAS  PubMed  Google Scholar 

  28. Baines AT, Xu D, Der CJ . Inhibition of Ras for cancer treatment: the search continues. Future Med Chem 2011; 3: 1787–1808.

    Article  CAS  PubMed  Google Scholar 

  29. Song MS, Salmena L, Pandolfi PP . The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13: 283–296.

    Article  CAS  PubMed  Google Scholar 

  30. Domcke S, Sinha R, Levine DA, Sander C, Schultz N . Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 2013; 4: 2126.

    Article  PubMed  Google Scholar 

  31. Ince TA, Sousa AD, Jones MA, Harrell JC, Agoston ES, Krohn M et al. Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nat Commun 2015; 6: 7419.

    Article  CAS  PubMed  Google Scholar 

  32. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 2000; 21: 585–591.

    Article  CAS  PubMed  Google Scholar 

  33. Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P et al. Epithelial ovarian cancer experimental models. Oncogene 2014; 33: 3619–3633.

    Article  CAS  PubMed  Google Scholar 

  34. Hasan N, Ohman AW, Dinulescu DM . The promise and challenge of ovarian cancer models. Transl Cancer Res 2015; 4: 14–28.

    CAS  PubMed  Google Scholar 

  35. Horlings HM, Flanagan AM, Huntsman DG . Categorization of cancer through genomic complexity could guide research and management strategies. J Pathol 2015; 236: 397–402.

    Article  PubMed  Google Scholar 

  36. Horlings HM, Shah SP, Huntsman DG . Using Somatic Mutations to Guide Treatment Decisions: Context Matters. JAMA Oncol 2015; 1: 275–276.

    Article  PubMed  Google Scholar 

  37. Kufe DW . Mucins in cancer: function, prognosis and therapy. Nature Rev Cancer 2009; 9: 874–885.

    Article  CAS  Google Scholar 

  38. Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 2011; 30: 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  39. Schroeder JA, Thompson MC, Gardner MM, Gendler SJ . Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem 2001; 276: 13057–13064.

    Article  CAS  PubMed  Google Scholar 

  40. Jain N, Curran E, Iyengar NM, Diaz-Flores E, Kunnavakkam R, Popplewell L et al. Phase II study of the oral MEK inhibitor selumetinib in advanced acute myelogenous leukemia: a University of Chicago phase II consortium trial. Clin Cancer Res 2014; 20: 490–498.

    Article  CAS  PubMed  Google Scholar 

  41. Kandil E, Tsumagari K, Ma J, Abd Elmageed ZY, Li X, Slakey D et al. Synergistic inhibition of thyroid cancer by suppressing MAPK/PI3K/AKT pathways. J Surg Res 2013; 184: 898–906.

    Article  CAS  PubMed  Google Scholar 

  42. Paolo M, Assunta S, Antonio R, Claudia SP, Anna BM, Clorinda S et al. Selumetinib in advanced non small cell lung cancer (NSCLC) harbouring KRAS mutation: endless clinical challenge to KRAS-mutant NSCLC. Rev Recent Clin Trials 2013; 8: 93–100.

    Article  PubMed  Google Scholar 

  43. Iwanaga K, Yang Y, Raso MG, Ma L, Hanna AE, Thilaganathan N et al. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res 2008; 68: 1119–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Du P, Kibbe WA, Lin SM . lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008; 24: 1547–1548.

    Article  CAS  PubMed  Google Scholar 

  45. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research 2015; 43: e47.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Department of Defense (DOD) Ovarian Cancer Academy Award W81XWH-10-1-0525 and NIH/NCI R01 CA163462 (to AMV). Dr Vlad’s work has been funded by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Vlad.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, T., Brozick, J. et al. Effects of Kras activation and Pten deletion alone or in combination on MUC1 biology and epithelial-to-mesenchymal transition in ovarian cancer. Oncogene 35, 5010–5020 (2016). https://doi.org/10.1038/onc.2016.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.53

This article is cited by

Search

Quick links