Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects

Abstract

Patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) have better responses to radiotherapy and higher overall survival rates than do patients with HPV-negative HNSCC, but the mechanisms underlying this phenomenon are unknown. p16 is used as a surrogate marker for HPV infection. Our goal was to examine the role of p16 in HPV-related favorable treatment outcomes and to investigate the mechanisms by which p16 may regulate radiosensitivity. HNSCC cells and xenografts (HPV/p16-positive and -negative) were used. p16-overexpressing and small hairpin RNA-knockdown cells were generated, and the effect of p16 on radiosensitivity was determined by clonogenic cell survival and tumor growth delay assays. DNA double-strand breaks (DSBs) were assessed by immunofluorescence analysis of 53BP1 foci; DSB levels were determined by neutral comet assay; western blotting was used to evaluate protein changes; changes in protein half-life were tested with a cycloheximide assay; gene expression was examined by real-time polymerase chain reaction; and data from The Cancer Genome Atlas HNSCC project were analyzed. p16 overexpression led to downregulation of TRIP12, which in turn led to increased RNF168 levels, repressed DNA damage repair (DDR), increased 53BP1 foci and enhanced radioresponsiveness. Inhibition of TRIP12 expression further led to radiosensitization, and overexpression of TRIP12 was associated with poor survival in patients with HPV-positive HNSCC. These findings reveal that p16 participates in radiosensitization through influencing DDR and support the rationale of blocking TRIP12 to improve radiotherapy outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ang KK, Sturgis EM . Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma. Semin Radiat Oncol 2012; 22: 128–142.

    Article  PubMed  Google Scholar 

  2. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010; 363: 24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. El-Naggar AK, Westra WH . p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck 2011; 34: 459–461.

    Article  PubMed  Google Scholar 

  4. Klussmann JP, Gültekin E, Weissenborn SJ, Wieland U, Dries V, Dienes HP et al. Expression of p16 protein identifies a distinctentity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol 2003; 162: 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall M, Bates S, Peters G . Evidence for different modes of action of cyclin-dependent kinase inhibitors: p15 and p16 bind to kinases, p21 and p27 bind to cyclins. Oncogene 1995; 11: 1581–1588.

    CAS  PubMed  Google Scholar 

  6. Li W, Thompson CH, Cossart YE, O'Brien CJ, McNeil EB, Scolyer RA et al. The expression of key cell cycle markers and presence of human papillomavirus in squamous cell carcinoma of the tonsil. Head Neck 2004; 26: 1–9.

    Article  PubMed  Google Scholar 

  7. Matsumura Y, Yamagishi N, Miyakoshi J, Imamura S, Takebe H . Increase in radiation sensitivity of human malignant melanoma cells by expression of wild-type p16 gene. Cancer Lett 1997; 115: 91–96.

    Article  CAS  PubMed  Google Scholar 

  8. Lee AW, Li JH, Shi W, Li A, Ng E, Liu TJ et al. p16 gene therapy: a potentially efficacious modality for nasopharyngeal carcinoma. Mol Cancer Ther 2003; 2: 961–969.

    CAS  PubMed  Google Scholar 

  9. Dok R, Kalev P, Van Limbergen EJ, Asbagh LA, Vázquez I, Hauben E et al. p16INK4a impairs homologous recombination-mediated DNA repair in human papillomavirus-positive head and neck tumors. Cancer Res 2014; 74: 1739–1751.

    Article  CAS  PubMed  Google Scholar 

  10. Mirzayans R, Andrais B, Hansen G, Murray D . Role of p16(INK4A) in replicative senescence and DNA damage-induced premature senescence in p53-deficient human cells. Bio Chem Res Int 2012; 2012: 951574.

    Google Scholar 

  11. Lewis Jr JS, Thorstad WL, Chernock RD, Haughey BH, Yip JH, Zhang Q et al. p16 positive oropharyngeal squamous cell carcinoma:an entity with a favorable prognosis regardless of tumor HPV status. Am J Surg Pathol 2010; 34: 1088–1096.

    Article  PubMed  Google Scholar 

  12. Rieckmann T, Tribius S, Grob TJ, Meyer F, Busch CJ, Petersen C et al. HNSCC cell lines positive for HPV and P16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother Oncol 2013; 107: 242–246.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuda K, Miura S, Kurashige T, Suzuki K, Kondo H, Ihara M et al. Significance of p53-binding protein 1 nuclear foci in uterine cervical lesions: endogenous DNA double strand breaks and genomic instability during carcinogenesis. Histopathology 2011; 59: 441–451.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gudjonsson T, Altmeyer M, Savic V, Toledo L, Dinant C, Grøfte M et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 2012; 150: 697–709.

    Article  CAS  PubMed  Google Scholar 

  15. DiTullio Jr RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 2002; 4: 998–1002.

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC et al. DNA damage-induced G(2)-M checkpoint activation by histone H2AX and53BP1. Nat Cell Biol 2002; 4: 993–997.

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Matsuoka S, Carpenter PB, Elledge SJ . 53BP1, a mediator of the DNA damage checkpoint. Science 2002; 298: 1435–1438.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson L, Henderson C, Adachi Y . Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol 2001; 21: 1719–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rappold I, Iwabuchi K, Date T, Chen J . Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage signaling pathways. J Cell Biol 2001; 153: 613–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD . p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000; 151: 1381–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 2009; 136: 435–446.

    Article  CAS  PubMed  Google Scholar 

  22. Bohgaki M, Bohgaki T, El Ghamrasni S, Srikumar T, Maire G, Panier S et al. RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks. Proc Natl Acad Sci 2013; 110: 20982–20987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Collado M, Serrano M . The TRIP from ULF to ARF. Cancer Cell 2010; 17: 317–318.

    Article  CAS  PubMed  Google Scholar 

  24. Chen D, Kon N, Zhong J, Zhang P, Yu L, Gu W . Differential effects on ARF stability by normal versus oncogenic levels of c-Myc expression. Mol Cell 2013; 51: 46–56.

    Article  PubMed  Google Scholar 

  25. Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M et al. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol 2013; 15: 967–977.

    Article  CAS  PubMed  Google Scholar 

  26. Smith-Sørensen B, Hovig E . CDKN2A (p16INK4A) somatic and germline mutations. Hum Mutat 1996; 7: 294–303.

    Article  PubMed  Google Scholar 

  27. Xu R, Wang F, Wu L, Wang J, Lu C . A systematic review of hypermethylation of p16 gene in esophageal cancer. Cancer Biomark 2013; 13: 215–226.

    Article  PubMed  Google Scholar 

  28. Lou-Qian Z, Rong Y, Ming L, Xin Y, Feng J, Lin X . The prognostic value of epigenetic silencing of p16 gene in NSCLC patients: a systematic review and meta-analysis. PLoS ONE 2013; 8: e54970.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Tang L, Xie R, Nie W, Chen L, Guan X . p16 promoter hypermethylation is associated with increased breast cancer risk. Mol Med Rep 2012; 6: 904–908.

    Article  PubMed  Google Scholar 

  30. Bihl MP, Foerster A, Lugli A, Zlobec I . Characterization of CDKN2A(p16) methylation and impact in colorectal cancer: systematic analysis using pyrosequencing. J Transl Med 2012; 10: 173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang L, Raju U, Milas L, Molkentine D, Zhang Z, Yang P et al. Huachansu, containing cardiac glycosides, enhances radiosensitivity of human lung cancer cells. Anticancer Res 2011; 31: 2141–2148.

    CAS  PubMed  Google Scholar 

  32. Leemans CR, Braakhuis BJ, Brakenhoff RH . The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11: 9–22.

    Article  CAS  PubMed  Google Scholar 

  33. Moody CA, Laimins LA . Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10: 550–560.

    Article  CAS  PubMed  Google Scholar 

  34. Li C, Johnson DE . Liberation of functional p53 by proteasome inhibition in human papilloma virus-positive head and neck squamous cell carcinoma cells promotes apoptosis and cell cycle arrest. Cell Cycle 2013; 12: 923–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McLaughlin-Drubin ME, Park D, Munger K . Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci 2013; 110: 16175–16180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang L, Mason KA, Ang KK, Buchholz T, Valdecanas D, Mathur A et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest New Drugs 2012; 30: 2113–2120.

    Article  CAS  PubMed  Google Scholar 

  37. Dickson MA, Tap WD, Keohan ML, D'Angelo SP, Gounder MM, Antonescu CR et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 2013; 31: 2024–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bauer E, Recknagel RD, Fiedler U, Wollweber L, Bock C, Greulich KO . The distribution of the tail moments in single cell gel electrophoresis (comet assay) obeys a chi-square (chi2) not a gaussian distribution. Mutat Res 1998; 398: 101–110.

    Article  CAS  PubMed  Google Scholar 

  39. Moynahan ME, Chiu JW, Koller BH, Jasin M . Brca1 controls homology-directed DNA repair. Mol Cell 1999; 4: 511–518.

    Article  CAS  PubMed  Google Scholar 

  40. Huen MS, Sy SM, Chen J . BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 2010; 11: 138–148.

    Article  CAS  PubMed  Google Scholar 

  41. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA . ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 2010; 141: 970–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peuscher MH, Jacobs JJ . DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Nat Cell Biol 2011; 13: 1139–1145.

    Article  CAS  PubMed  Google Scholar 

  43. Harrigan JA, Belotserkovskaya R, Coates J, Dimitrova DS, Polo SE, Bradshaw CR et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 2011; 93: 97–108.

    Article  Google Scholar 

  44. Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 2011; 13: 243–253.

    Article  CAS  PubMed  Google Scholar 

  45. Pinato S, Gatti M, Scandiuzzi C, Confalonieri S, Penengo L . UMI, a novel RNF168 ubiquitin binding domain involved in the DNA damage signaling pathway. Mol Cell Biol 2011; 31: 118–126.

    Article  CAS  PubMed  Google Scholar 

  46. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES et al. The RIDDLE syndrome protein mediates an ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 2009; 136: 420–434.

    Article  CAS  PubMed  Google Scholar 

  47. Yang ZH, Zhou CL, Zhu H, Li JH, He CD . A functional SNP in the MDM2 promoter mediates E2F1 affinity to modulate cyclin D1 expression in tumor cell proliferation. Asian Pac J Cancer Prev 2014; 15: 3817–3823.

    Article  PubMed  Google Scholar 

  48. Chou TF, Deshaies RJ . Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system. J Biol Chem 2011; 286: 16546–16554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Jeffery Myers and Dr Peter J F Snijders for kindly sharing their cell lines. This work was supported by grants R01CA168485 and R01CA181029 from the National Cancer Institute (REM and KKA) and (LM), respectively, the Gilbert H Fletcher Chair (KKA), Cancer Center Support Grant (P30 NCI CA016672), Individual Investigator Research Award RP150293 from the Cancer Prevention Research Institute of Texas (HDS), an MD Anderson Cancer Head and Cancer SPORE Career Development Award (HDS) and a Center for Radiation Oncology Research Development Award (HDS). The content is solely the responsibility of the authors and does not represent the official views of any grant-awarding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, P., Molkentine, D. et al. TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects. Oncogene 36, 820–828 (2017). https://doi.org/10.1038/onc.2016.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.250

This article is cited by

Search

Quick links