Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-β responses

Abstract

Smad proteins are central mediators in the canonical transforming growth factor-β (TGF-β) signaling pathway in mammalian cells. We report here that bromodomain-containing protein 7 (BRD7) functions as a novel transcription coactivator for Smads in TGF-β signaling. BRD7 forms a TGF-β inducible complex with Smad3/4 through its N-terminal Smad-binding domain. BRD7 simultaneously binds to acetylated histones to promote Smad-chromatin association, and associates with histone acetyltransferase p300 to enhance Smad transcriptional activity. Ectopic expression of BRD7, but not its mutants defective in Smad binding, enhances TGF-β transcriptional, tumor-suppressing and epithelial-mesenchymal transition responses. Conversely, depletion of BRD7 inhibits TGF-β responses. Thus, our study provides compelling evidence for a new function of BRD7 in fine-tuning TGF-β physiological responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

acH3K9:

acetyl histone H3 Lys9

BMP:

bone morphogenetic protein

BRD7:

bromodomain-containing protein 7

EMT:

epithelial-mesenchymal transition

GST:

glutathione S-transferase

HAT:

histone acetyltransferase

P/CAF:

p300/CBP-associated factor

qRT-PCR:

quantitative real-time PCR

SIP1:

Smad-interacting protein 1

TGF:

transforming growth factor beta

TGIF:

TG-interacting factor

SMIF:

Smad4-interacting protein

SXS motif:

Ser-X-Ser motif

WT:

wild-type.

References

  1. Wu MY, Hill CS . Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 2009; 16: 329–343.

    Article  CAS  PubMed  Google Scholar 

  2. Massague J, Gomis RR . The logic of TGFbeta signaling. FEBS Lett 2006; 580: 2811–2820.

    Article  CAS  PubMed  Google Scholar 

  3. Derynck R, Miyazono K (eds). The TGF-beta Family: Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, NY, USA, 2007.

  4. Massague J . TGF-beta signalling in context. Nat Rev Mol Cell Biol 2012; 13: 616–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi Y, Massague J . Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  6. Miyazono K, ten Dijke P, Heldin CH . TGF-beta signaling by Smad proteins. Adv Immunol 2000; 75: 115–157.

    Article  CAS  PubMed  Google Scholar 

  7. Ross S, Hill CS . How the Smads regulate transcription. Int J Biochem Cell Biol 2008; 40: 383–408.

    Article  CAS  PubMed  Google Scholar 

  8. Feng XH, Derynck R . Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005; 21: 659–693.

    Article  CAS  PubMed  Google Scholar 

  9. Massague J, Seoane J, Wotton D . Smad transcription factors. Genes Dev 2005; 19: 2783–2810.

    Article  CAS  PubMed  Google Scholar 

  10. Chan HM, La Thangue NB . p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001; 114: 2363–2373.

    CAS  PubMed  Google Scholar 

  11. Feng XH, Zhang Y, Wu RY, Derynck R . The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 1998; 12: 2153–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai RY, Koester C, Ouyang T, Hahn SA, Hammerschmidt M, Peschel C et al. SMIF, a Smad4-interacting protein that functions as a co-activator in TGFbeta signalling. Nat Cell Biol 2002; 4: 181–190.

    Article  CAS  PubMed  Google Scholar 

  13. Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P . The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res 2000; 28: 4291–4298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J Biol Chem 1999; 274: 20489–20498.

    Article  CAS  PubMed  Google Scholar 

  15. Wotton D, Lo RS, Lee S, Massague JA . Smad transcriptional corepressor. Cell 1999; 97: 29–39.

    Article  CAS  PubMed  Google Scholar 

  16. Mantovani F, Drost J, Voorhoeve PM, Del Sal G, Agami R . Gene regulation and tumor suppression by the bromodomain-containing protein BRD7. Cell Cycle 2010; 9: 2777–2781.

    Article  CAS  PubMed  Google Scholar 

  17. Chiu YH, Lee JY, Cantley LC . BRD7, a tumor suppressor, interacts with p85alpha and regulates PI3K activity. Mol Cell 2014; 54: 193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burrows AE, Smogorzewska A, Elledge SJ . Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci USA 2010; 107: 14280–14285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H et al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 2010; 12: 380–389.

    Article  CAS  PubMed  Google Scholar 

  20. Harte MT, O'Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT et al. BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 2010; 70: 2538–2547.

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Zhang L, Niu Z, Zhou M, Peng C, Li X et al. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer 2008; 8: 253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu WJ, Hu KS, Chen DL, Zeng ZL, Luo HY, Wang F et al. Prognostic relevance of BRD7 expression in colorectal carcinoma. Eur J Clin Invest 2013; 43: 131–140.

    Article  CAS  PubMed  Google Scholar 

  23. Park YA, Lee JW, Kim HS, Lee YY, Kim TJ, Choi CH et al. Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 2014; 20: 565–575.

    Article  CAS  PubMed  Google Scholar 

  24. Balasubramanian A, Subramaniam R, Narayanan V, Annamalai T, Ramanathan A . BRD7 promoter hypermethylation as an indicator of well differentiated oral squamous cell carcinomas. Asian Pac J Cancer Prev 2015; 16: 1615–1619.

    Article  PubMed  Google Scholar 

  25. Li CY, Suardet L, Little JB . Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect. J Biol Chem 1995; 270: 4971–4974.

    Article  CAS  PubMed  Google Scholar 

  26. Peng C, Zhou J, Liu HY, Zhou M, Wang LL, Zhang QH et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem 2006; 97: 882–892.

    Article  CAS  PubMed  Google Scholar 

  27. Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996; 381: 620–623.

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Lamouille S, Derynck R . TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.

    Article  CAS  PubMed  Google Scholar 

  29. Kim ES, Kim MS, Moon A . TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol 2004; 25: 1375–1382.

    CAS  PubMed  Google Scholar 

  30. Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR et al. BRD7 suppresses the growth of nasopharyngeal carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem 2007; 303: 141–149.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou J, Ma J, Zhang BC, Li XL, Shen SR, Zhu SG et al. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol 2004; 200: 89–98.

    Article  CAS  PubMed  Google Scholar 

  32. Kikuchi M, Okumura F, Tsukiyama T, Watanabe M, Miyajima N, Tanaka J et al. TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim Biophys Acta 2009; 1793: 1828–1836.

    Article  CAS  PubMed  Google Scholar 

  33. Park YA, Lee JW, Choi JJ, Jeon HK, Cho Y, Choi C et al. The interactions between microRNA-200c and BRD7 in endometrial carcinoma. Gynecol Oncol 2012; 124: 125–133.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Zhou M, Luo X, Zhang L, Niu Z, Peng C et al. Transcriptional regulation of BRD7 expression by Sp1 and c-Myc. BMC. Mol Biol 2008; 9: 111.

    Google Scholar 

  35. Kaeser MD, Aslanian A, Dong MQ, Yates JR 3rd, Emerson BM . BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 2008; 283: 32254–32263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu Y, Cao W, Zhou M, Li C, Luo Y, Wang H et al. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex. Behav Brain Res 2015; 286: 1–10.

    Article  CAS  PubMed  Google Scholar 

  37. Wang D, Long J, Dai F, Liang M, Feng XH, Lin X . BCL6 represses Smad signaling in transforming growth factor-beta resistance. Cancer Res 2008; 68: 783–789.

    Article  CAS  PubMed  Google Scholar 

  38. Dai F, Lin X, Chang C, Feng XH . Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. Dev Cell 2009; 16: 345–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006; 125: 915–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank David Luskutoff for p800 (PAI-1)-luc, Bert Vogelstein for WWP1 (p21)-luc and SBE-luc. We are grateful to the laboratory members for helpful discussion and technical assistance. This research was partly supported by grants from NSFC (91540205, 31571447, 31171347) and MOST (2012CB966600, 2015CB553800, 2013CB945303), NIH (R01GM63773, R01AR053591, R01CA108454, and R01DK073932), Project 111, PhD Programs Foundation of Ministry of Education of China (20110101120152), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Liu or X-H Feng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhao, M., Liu, J. et al. Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-β responses. Oncogene 36, 362–372 (2017). https://doi.org/10.1038/onc.2016.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.204

This article is cited by

Search

Quick links