Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth

Abstract

Androgen receptor (AR) functions as a ligand-dependent transcription factor to regulate its downstream signaling for prostate cancer progression. AR complex formation by multiple transcription factors is important for enhancer activity and transcriptional regulation. However, the significance of such collaborative transcription factors has not been fully understood. In this study, we show that Oct1, an AR collaborative factor, coordinates genome-wide AR signaling for prostate cancer growth. Using global analysis by chromatin immunoprecipitation sequencing (ChIP-seq), we found that Oct1 is recruited to AR-binding enhancer/promoter regions and facilitates androgen signaling. Moreover, a major target of AR/Oct1 complex, acyl-CoA synthetase 3 (ACSL3), contributes to tumor growth in nude mice, and its high expression is associated with poor prognosis in prostate cancer patients. Next, we examined the therapeutic effects of pyrrole-imidazole polyamides that target the Oct1-binding sequence identified in the center of the ACSL3 AR-binding site. We observed that treatment with Oct1 polyamide severely blocked the Oct1 binding at the ACSL3 enhancer responsible for its transcriptional activity and ACSL3 induction. In addition, Oct1 polyamides suppressed castration-resistant tumor growth and specifically repressed global Oct1 chromatin association and androgen signaling in prostate cancer cells, with few nonspecific effects on basal promoter activity. Thus, targeting Oct1 binding could be a novel therapeutic strategy for AR-activated castration-resistant prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Grossmann ME, Huang H, Tindall DJ . Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001; 93: 1687–1697.

    Article  CAS  Google Scholar 

  2. Debes JD, Tindall DJ . Mechanisms of androgen-refractory prostate cancer. N Engl J Med 2004; 351: 1488–1490.

    Article  CAS  Google Scholar 

  3. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  CAS  Google Scholar 

  4. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Article  Google Scholar 

  5. Jin Y, Wang L, Qu S, Sheng X, Kristian A, Mælandsmo GM et al. STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO Mol Med 2015; 7: 315–331.

    Article  CAS  Google Scholar 

  6. Takayama K, Inoue S . Transcriptional network of androgen receptor in prostate cancer progression. Int J Urol 2013; 20: 756–768.

    Article  CAS  Google Scholar 

  7. Kim JY, Banerjee T, Vinckevicius A, Luo Q, Parker JB, Baker MR et al. A role for WDR5 in integrating threonine 11 phosphorylation to lysine 4 methylation on histone H3 during androgen signaling and in prostate cancer. Mol Cell 2014; 54: 613–625.

    Article  CAS  Google Scholar 

  8. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 2007; 27: 380–392.

    Article  Google Scholar 

  9. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 2009; 138: 245–256.

    Article  CAS  Google Scholar 

  10. Tan PY, Chang CW, Chng KR, Wansa KD, Sung WK, Cheung E . Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 2012; 32: 399–414.

    Article  CAS  Google Scholar 

  11. Takayama K, Suzuki T, Tsutsumi S, Fujimura T, Takahashi S, Homma Y et al. Integrative analysis of FOXP1 function reveals a tumor-suppressive effect in prostate cancer. Mol Endocrinol 2014; 28: 2012–2024.

    Article  Google Scholar 

  12. Takayama K, Suzuki T, Tsutsumi S, Fujimura T, Urano T, Takahashi S et al. RUNX1, an androgen- and EZH2-regulated gene, has differential roles in AR-dependent and -independent prostate cancer. Oncotarget 2015; 6: 2263–2276.

    Article  Google Scholar 

  13. Verrijzer CP, Van der Vliet PC . POU domain transcription factors. Biochim Biophys Acta 1993; 1173: 1–21.

    Article  CAS  Google Scholar 

  14. Obinata D, Takayama K, Urano T, Murata T, Kumagai J, Fujimura T et al. Oct1 regulates cell growth of LNCaP cells and is a prognostic factor for prostate cancer. Int J Cancer 2012; 130: 1021–1028.

    Article  CAS  Google Scholar 

  15. Minekura H, Kang MJ, Inagaki Y, Suzuki H, Sato H, Fujino T et al. Genomic organization and transcription units of the human acyl-CoA synthetase 3 gene. Gene 2001; 278: 185–192.

    Article  CAS  Google Scholar 

  16. Attard G, Clark J, Ambroisine L, Mills IG, Fisher G, Flohr P et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br J Cancer 2008; 99: 314–320.

    Article  CAS  Google Scholar 

  17. Hendriksen PJ, Dits NF, Kokame K, Veldhoven A, van Weerden WM, Bangma CH et al. Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res 2006; 66: 5012–5020.

    Article  CAS  Google Scholar 

  18. Wang G, Jones SJ, Marra MA, Sadar MD . Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene 2006; 25: 7311.

    Article  CAS  Google Scholar 

  19. Zhao H, Kim Y, Wang P, Lapointe J, Tibshirani R, Pollack JR et al. Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines. Prostate 2005; 63: 187–197.

    Article  CAS  Google Scholar 

  20. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007; 448: 595–59.

    Article  CAS  Google Scholar 

  21. Dervan PB . Molecular recognition of DNA by small molecules. Bioorg Med Chem 2001; 9: 2215–2235.

    Article  CAS  Google Scholar 

  22. Jariwala U, Cogan JP, Jia L, Frenkel B, Coetzee GA . Inhibition of AR-mediated transcription by binding of Oct1 to a motif enriched in AR-occupied regions. Prostate 2009; 69: 392–400.

    Article  CAS  Google Scholar 

  23. Menendez JA, Lupu R . Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763–777.

    Article  CAS  Google Scholar 

  24. Barfeld SJ, Itkonen HM, Urbanucci A, Mills IG . Androgen-regulated metabolism and biosynthesis in prostate cancer. Endocr Relat Cancer 2014; 21: T57–T66.

    Article  Google Scholar 

  25. Bu SY, Mashek MT, Mashek DG . Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J Biol Chem 2009; 284: 30474–30483.

    Article  CAS  Google Scholar 

  26. Chang YS, Tsai CT, Huangfu CA, Huang WY, Lei HY, Lin CF et al. ACSL3 and GSK-3beta are essential for lipid upregulation induced by endoplasmic reticulum stress in liver cells. J Cell Biochem 2011; 112: 881–893.

    Article  CAS  Google Scholar 

  27. Fujimoto Y, Itabe H, Kinoshita T, Homma KJ, Onoduka J, Mori M et al. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res 2007; 48: 1280–1292.

    Article  CAS  Google Scholar 

  28. Wu M, Cao A, Dong B, Liu J . Reduction of serum free fatty acids and triglycerides by liver-targeted expression of long chain acyl-CoA synthetase 3. Int J Mol Med 2011; 27: 655–662.

    Article  CAS  Google Scholar 

  29. Monaco ME, Creighton CJ, Lee P, Zou X, Topham MK, Stafforini DM . Expression of long-chain fatty Acyl-CoA synthetase 4 in breast and prostate cancers is associated with sex steroid hormone receptor negativity. Transl Oncol 2010; 3: 91–98.

    Article  Google Scholar 

  30. Maloberti PM, Duarte AB, Orlando UD, Pasqualini ME, Solano AR, Lopez-Otin C et al. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One 2010; 5: e15540.

    Article  Google Scholar 

  31. Gassler N, Herr I, Schneider A, Penzel R, Langbein L, Schirmacher P et al. Impaired expression of acyl-CoA synthetase 5 in sporadic colorectal adenocarcinomas. J Pathol 2005; 207: 295–300.

    Article  CAS  Google Scholar 

  32. Yamashita Y, Kumabe T, Cho YY, Watanabe M, Kawagishi J, Yoshimoto T et al. Fatty acid induced glioma cell growth is mediated by the acyl-CoA synthetase 5 gene located on chromosome 10q25.1-q25.2, a region frequently deleted in malignant gliomas. Oncogene 2000; 19: 5919–5925.

    Article  CAS  Google Scholar 

  33. Dervan PB, Edelson BS . Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 2003; 13: 284–299.

    Article  CAS  Google Scholar 

  34. Murty MS, Sugiyama H . Biology of N-methylpyrrole-N-methylimidazole hairpin polyamide. Biol Pharm Bull 2004; 27: 468–474.

    Article  CAS  Google Scholar 

  35. Matsuda H, Fukuda N, Ueno T, Katakawa M, Wang X, Watanabe T et al. Transcriptional inhibition of progressive renal disease by gene silencing pyrrole-imidazole polyamide targeting of the transforming growth factor-beta1 promoter. Kidney Int 2011; 79: 46–56.

    Article  CAS  Google Scholar 

  36. Wang X, Nagase H, Watanabe T, Nobusue H, Suzuki T, Asami Y et al. Inhibition of MMP-9 transcription and suppression of tumor metastasis by pyrrole-imidazole polyamide. Cancer Sci 2010; 101: 759–766.

    Article  CAS  Google Scholar 

  37. Nickols NG, Dervan PB . Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proc Natl Acad Sci USA 2007; 104: 10418–10423.

    Article  CAS  Google Scholar 

  38. Yang F, Nickols NG, Li BC, Marinov GK, Said JW, Dervan PB . Antitumor activity of a pyrrole-imidazole polyamide. Proc Natl Acad Sci USA 2013; 110: 1863–1868.

    Article  CAS  Google Scholar 

  39. Sher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    Article  Google Scholar 

  40. He B, Lanz RB, Fiskus W, Geng C, Yi P, Hartig SM et al. GATA2 facilitates steroid receptor coactivator recruitement to the androgen receptor complex. Proc Natl Acsd Sci USA 2014; 111: 18261–18266.

    Article  CAS  Google Scholar 

  41. Takayama K, Horie-Inoue K, Katayama S, Suzuki T, Tsutsumi S, Ikeda K et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 2013; 32: 1665–1680.

    Article  CAS  Google Scholar 

  42. Takayama K, Suzuki T, Fujimura T, Urano T, Takahashi S, Homma Y et al. CtBP2 modulates the androgen receptor to promote prostate cancer progression. Cancer Res 2014; 74: 6542–6553.

    Article  CAS  Google Scholar 

  43. Raskatov JA, Nickols NG, Hargrove AE, Marinov GK, Wold B, Dervan PB . Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide. Proc Natl Acad Sci USA 2012; 109: 16041–16045.

    Article  CAS  Google Scholar 

  44. Nagashima T, Aoyama T, Yokoe T, Fukasawa A, Fukuda N, Ueno T et al. Pharmacokinetic modeling and prediction of plasma pyrrole-imidazole polyamide concentration in rats using simultaneous urinary and biliary excretion data. Biol Pharm Bull 2009; 32: 921–927.

    Article  CAS  Google Scholar 

  45. Takayama K, Kaneshiro K, Tsutsumi S, Horie-Inoue K, Ikeda K, Urano T et al. Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 2007; 26: 4453–4463.

    Article  CAS  Google Scholar 

  46. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9: R137.

    Article  Google Scholar 

  47. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2011; 38: 576–589.

    Article  Google Scholar 

Download references

Acknowledgements

We thank N Sasaki, T Oishi, S Takada, A Ito and E Sakamoto for technical assistance. This work was supported by grants of the Cell Innovation Program (SI) and P-Direct (SI) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; by Grants-in-Aid for SI (no. 15K15353), KT (no. 15K15581), TU (no. 25293214) and ST (no. 15K10610) from the Japan Society for the Promotion of Science (JSPS), Japan; by Grants-in-Aid (SI) from the MHLW, Japan; by the 2010 Research Grant of the 60th Anniversary Memorial Fund (DO) from Nihon University Medical Alumni Association; by the Young Researcher Promotion Grant (DO) from The Japanese Urological Association; by the Advanced Research for Medical Products Mining Program (SI), NIBIO, Japan; by grants from Takeda Science Foundation (SI and KT), by a grant from Mochida Memorial Research Foundation (KT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Inoue.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obinata, D., Takayama, K., Fujiwara, K. et al. Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth. Oncogene 35, 6350–6358 (2016). https://doi.org/10.1038/onc.2016.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.171

This article is cited by

Search

Quick links