Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intestinal knockout of Nedd4 enhances growth of Apcmin tumors

Abstract

Nedd4 (Nedd4-1) is an E3 ubiquitin ligase that belongs to the HECT family and comprises a C2-WW(n)-HECT domain architecture. Although it has been reported to regulate growth factor receptors and cellular signaling, its role in cancer development has been controversial, with some studies proposing that it promotes cancer while others suggest it inhibits tumor growth. Here, we tested the effect of Nedd4 on intestinal tumor formation and growth using Nedd4-knockout mice (Nedd4 floxed (fl) mice crossed to villin-Cre mice). Although we find that knockout of Nedd4 on its own does not cause tumor growth, its knockout in the context of Apc+/min-derived colorectal tumors leads to augmentation of tumor growth, suggesting that Nedd4 normally suppresses intestinal WNT signaling and growth of colonic tumors. WNT signaling microarray, immunoblotting and immunohistochemistry analyses of tumors derived from the Villin-Cre;Nedd4fl/fl;Apc+/min colons demonstrated elevated expression of the WNT upstream effectors LEF1 (full length) and YY1 in these tumors relative to control (Apc+/min alone) tumors. Together, these results suggest that Nedd4 suppresses colonic WNT signaling and tumor growth, at least in part, by suppressing the transcription factors LEF1 and YY1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Klaus A, Birchmeier W . Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008; 8: 387–398.

    Article  CAS  PubMed  Google Scholar 

  2. Lucero OM, Dawson DW, Moon RT, Chien AJ . A re-evaluation of the "oncogenic" nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep 2010; 12: 314–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Najdi R, Holcombe RF, Waterman ML . Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 2011; 10: 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barker N, Bartfeld S, Clevers H . Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 2010; 7: 656–670.

    Article  CAS  PubMed  Google Scholar 

  5. van Noort M, Clevers H . TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev Biol 2002; 244: 1–8.

    Article  CAS  PubMed  Google Scholar 

  6. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16: 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cadigan KM, Waterman ML . TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 2012; 4: 6–14.

    Article  Google Scholar 

  8. Wend P, Holland JD, Ziebold U, Birchmeier W . Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 2010; 21: 855–863.

    Article  CAS  PubMed  Google Scholar 

  9. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009; 457: 608–611.

    Article  CAS  PubMed  Google Scholar 

  10. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011; 469: 415–418.

    Article  CAS  PubMed  Google Scholar 

  11. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010; 12: 468–476.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W, Torres AJ et al. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 2014; 506: 52–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rotin D, Kumar S . Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 2009; 10: 398–409.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Z, Choi BK, Mujoo K, Fan X, Fa M, Mukherjee S et al. The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene 2015; 34: 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  15. Katz M, Shtiegman K, Tal-Or P, Yakir L, Mosesson Y, Harari D et al. Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 2002; 3: 740–751.

    Article  CAS  PubMed  Google Scholar 

  16. Murdaca J, Treins C, Monthouel-Kartmann MN, Pontier-Bres R, Kumar S, Van Obberghen E et al. Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 2004; 279: 26754–26761.

    Article  CAS  PubMed  Google Scholar 

  17. Persaud A, Alberts P, Hayes M, Guettler S, Clarke I, Sicheri F et al. Nedd4-1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function. EMBO J 2011; 30: 3259–3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang B, Gay DL, MacLeod MK, Cao X, Hala T, Sweezer EM et al. Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nat Immunol 2008; 9: 1356–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harty RN, Brown ME, Wang G, Huibregtse J, Hayes FP . A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci USA 2000; 97: 13871–13876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leykauf K, Salek M, Bomke J, Frech M, Lehmann WD, Durst M et al. Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process. J Cell Sci 2006; 119: 3634–3642.

    Article  CAS  PubMed  Google Scholar 

  21. Fouladkou F, Lu C, Jiang C, Zhou L, She Y, Walls JR et al. The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1. J Biol Chem 2010; 285: 6770–6780.

    Article  CAS  PubMed  Google Scholar 

  22. Ing B, Shteiman-Kotler A, Castelli M, Henry P, Pak Y, Stewart B et al. Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol Cell Biol 2007; 27: 481–496.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Oppenheim RW, Sugiura Y, Lin W . Abnormal development of the neuromuscular junction in Nedd4-deficient mice. Dev Biol 2009; 330: 153–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsia HE, Kumar R, Luca R, Takeda M, Courchet J, Nakashima J et al. Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proc Natl Acad Sci USA 2014; 111: 13205–13210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plant PJ, Yeger H, Staub O, Howard P, Rotin D . The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 1997; 272: 32329–32336.

    Article  CAS  PubMed  Google Scholar 

  26. Persaud A, Alberts P, Mari S, Tong J, Murchie R, Maspero E et al. Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity. Sci Signal 2014; 7: ra95.

    Article  PubMed  Google Scholar 

  27. Wang J, Peng Q, Lin Q, Childress C, Carey D, Yang W . Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J Biol Chem 2010; 285: 12279–12288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 2007; 130: 651–662.

    Article  CAS  PubMed  Google Scholar 

  29. Kanelis V, Rotin D, Forman-Kay JD . Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 2001; 8: 407–412.

    Article  CAS  PubMed  Google Scholar 

  30. Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman-Kay JD . Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. Structure 2006; 14: 543–553.

    Article  CAS  PubMed  Google Scholar 

  31. March HN, Rust AG, Wright NA, ten Hoeve J, de Ridder J, Eldridge M et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 2011; 43: 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin ES, Tonon G, Sinha R, Xiao Y, Feng B, Kimmelman AC et al. Common and distinct genomic events in sporadic colorectal cancer and diverse cancer types. Cancer Res 2007; 67: 10736–10743.

    Article  CAS  PubMed  Google Scholar 

  33. Eide PW, Cekaite L, Danielsen SA, Eilertsen IA, Kjenseth A, Fykerud TA et al. NEDD4 is overexpressed in colorectal cancer and promotes colonic cell growth independently of the PI3K/PTEN/AKT pathway. Cell Signal 2013; 25: 12–18.

    Article  CAS  PubMed  Google Scholar 

  34. Kim SS, Yoo NJ, Jeong EG, Kim MS, Lee SH . Expression of NEDD4-1, a PTEN regulator, in gastric and colorectal carcinomas. APMIS 2008; 116: 779–784.

    Article  PubMed  Google Scholar 

  35. Tanksley JP, Chen X, Coffey RJ . NEDD4L is downregulated in colorectal cancer and inhibits canonical WNT signaling. PLoS One 2013; 8: e81514.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kawabe H, Neeb A, Dimova K, Young SM Jr., Takeda M, Katsurabayashi S et al. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010; 65: 358–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. el Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 2004; 39: 186–193.

    Article  CAS  PubMed  Google Scholar 

  38. Madison BB, Dunbar L, Qiao XT, Braunstein K, Braunstein E, Gumucio DL . Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem 2002; 277: 33275–33283.

    Article  CAS  PubMed  Google Scholar 

  39. Fodde R, Smits R, Clevers H . APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1: 55–67.

    Article  CAS  PubMed  Google Scholar 

  40. Moser AR, Pitot HC, Dove WF . A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science (New York, NY) 1990; 247: 322–324.

    Article  CAS  Google Scholar 

  41. Arce L, Yokoyama NN, Waterman ML . Diversity of LEF/TCF action in development and disease. Oncogene 2006; 25: 7492–7504.

    Article  CAS  PubMed  Google Scholar 

  42. Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J et al. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 2001; 28: 53–57.

    CAS  PubMed  Google Scholar 

  43. Porfiri E, Rubinfeld B, Albert I, Hovanes K, Waterman M, Polakis P . Induction of a beta-catenin-LEF-1 complex by wnt-1 and transforming mutants of beta-catenin. Oncogene 1997; 15: 2833–2839.

    Article  CAS  PubMed  Google Scholar 

  44. Wang WJ, Yao Y, Jiang LL, Hu TH, Ma JQ, Liao ZJ et al. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo. PLoS One 2013; 8: e76596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chinnappan D, Xiao D, Ratnasari A, Andry C, King TC, Weber HC . Transcription factor YY1 expression in human gastrointestinal cancer cells. Int J Oncol 2009; 34: 1417–1423.

    CAS  PubMed  Google Scholar 

  46. Yokoyama NN, Pate KT, Sprowl S, Waterman ML . A role for YY1 in repression of dominant negative LEF-1 expression in colon cancer. Nucleic Acids Res 2010; 38: 6375–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zaravinos A, Spandidos DA . Yin yang 1 expression in human tumors. Cell Cycle 2010; 9: 512–522.

    Article  CAS  PubMed  Google Scholar 

  48. Persaud A, Alberts P, Amsen EM, Xiong X, Wasmuth J, Saadon Z et al. Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol 2009; 5: 333.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Owens BM, Simmons A . Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol 2013; 6: 224–234.

    Article  CAS  PubMed  Google Scholar 

  50. Pinchuk IV, Mifflin RC, Saada JI, Powell DW . Intestinal mesenchymal cells. Curr Gastroenterol Rep 2010; 12: 310–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adegboyega PA, Ololade O, Saada J, Mifflin R, Di Mari JF, Powell DW . Subepithelial myofibroblasts express cyclooxygenase-2 in colorectal tubular adenomas. Clin Cancer Res 2004; 10: 5870–5879.

    Article  CAS  PubMed  Google Scholar 

  52. Buller NV, Rosekrans SL, Metcalfe C, Heijmans J, van Dop WA, Fessler E et al. Stromal Indian hedgehog signaling is required for intestinal adenoma formation in mice. Gastroenterology 2015; 148: 170–180 e176.

    Article  PubMed  Google Scholar 

  53. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet 2015; 47: 312–319.

    Article  CAS  PubMed  Google Scholar 

  54. Pali-Scholl I, Yildirim AO, Ackermann U, Knauer T, Becker C, Garn H et al. Anti-acids lead to immunological and morphological changes in the intestine of BALB/c mice similar to human food allergy. Exp Toxicol Pathol 2008; 60: 337–345.

    Article  PubMed  Google Scholar 

  55. Moolenbeek C, Ruitenberg EJ . The "Swiss roll": a simple technique for histological studies of the rodent intestine. Lab Animals 1981; 15: 57–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kazuko Hay for technical support and Dr Sylvie Robine for the Vil-CreERT2 mice. This grant was supported by the Canadian Institute of Health Research (MOP-130422, to DR), the German Research Foundation SPP1365/KA3423/1-1 (to HK) and the Fritz Thyssen Foundation (to HK). DR is a recipient of a Canada Research Chair form the Canadian Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Rotin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Thoeni, C., Connor, A. et al. Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene 35, 5839–5849 (2016). https://doi.org/10.1038/onc.2016.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.125

This article is cited by

Search

Quick links