Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exosomes mediate the acquisition of the disease phenotypes by cells with normal genome in tuberous sclerosis complex

Abstract

Functions of extracellular vesicles including exosomes in the pathogenesis of tuberous sclerosis complex (TSC) have not yet been studied. We report that the extracellular vesicles such as exosomes derived from tuberous sclerosis 1 (Tsc1)-null cells transform phenotypes of neighboring wild-type cells in vivo in such manner that they become functionally similar to Tsc1-null cells. The loss of Tsc1 in the mouse neural tube increases the number of the wild-type neuronal progenitors, which is followed by the precocious and transient acceleration of neuronal differentiation of these cells. The mechanisms regulating these changes involve the exosomal delivery of exosomal shuttle Notch1 and Rheb esRNA and component of γ-secretase complex presenilin 1 from Tsc1-null cells to wild-type cells leading to the activation of Notch and Rheb signaling in the recipient cells. The exosome-mediated mechanisms may also operate in the cells of angiomyolipoma (AML), which develops as a result of mutations in TSC1/TSC2 genes in TSC patients, because we observed the reactivation of mammalian target of rapamycin and Notch pathways, driven by the delivery of Rheb and Notch1 esRNA, in AML cells depleted of Rheb that were treated with the exosomes purified from AML cells with the constitutively high Rheb levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N et al. Terminology and classification of the cortical dysplasias. Neurology 2004; 62: S2–S8.

    Article  CAS  PubMed  Google Scholar 

  2. Wong M . Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2008; 49: 8–21.

    Article  PubMed  Google Scholar 

  3. Au KS, Hebert AA, Roach ES, Northrup H . Complete inactivation of the TSC2 gene leads to formation of hamartomas. Am J Hum Genet 1999; 65: 1790–1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheadle JP, Reeve MP, Sampson JR, Kwiatkowski DJ . Molecular genetic advances in tuberous sclerosis. Hum Genet 2000; 107: 97–114.

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh V . Aspects of tuberous sclerosis complex (TSC) protein function in the brain. Biochem Soc Trans 2003; 31: 579–583.

    Article  CAS  PubMed  Google Scholar 

  6. Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ et al. Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 2001; 69: 493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baybis M, Yu J, Lee A, Golden JA, Weiner H, McKhann G 2nd et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol 2004; 56: 478–487.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson MW, Emelin JK, Park SH, Vinters HV . Co-localization of TSC1 and TSC2 gene products in tubers of patients with tuberous sclerosis. Brain Pathol 1999; 9: 45–54.

    Article  CAS  PubMed  Google Scholar 

  9. Mizuguchi M, Ikeda K, Takashima S . Simultaneous loss of hamartin and tuberin from the cerebrum, kidney and heart with tuberous sclerosis. Acta Neuropathologica 2000; 99: 503–510.

    Article  CAS  PubMed  Google Scholar 

  10. Cepeda C, Andre VM, Yamazaki I, Hauptman JS, Chen JY, Vinters HV et al. Comparative study of cellular and synaptic abnormalities in brain tissue samples from pediatric tuberous sclerosis complex and cortical dysplasia type II. Epilepsia 2010; 51: 160–165.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Malatesta P, Hartfuss E, Gotz M . Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 2000; 127: 5253–5263.

    CAS  PubMed  Google Scholar 

  12. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR . Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001; 409: 714–720.

    Article  CAS  PubMed  Google Scholar 

  13. Parker MA, Anderson JK, Corliss DA, Abraria VE, Sidman RL, Park KI et al. Expression profile of an operationally-defined neural stem cell clone. Exp Neurol 2005; 194: 320–332.

    Article  CAS  PubMed  Google Scholar 

  14. Kornblum HI . Introduction to neural stem cells. Stroke 2007; 38: 810–816.

    Article  PubMed  Google Scholar 

  15. Lee C, Hu J, Ralls S, Kitamura T, Loh YP, Yang Y et al. The molecular profiles of neural stem cell niche in the adult subventricular zone. PLoS One 2012; 7: e50501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walker AS, Goings GE, Kim Y, Miller RJ, Chenn A, Szele FG . Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plasticity 2010; 2010: 894374.

    Article  PubMed  Google Scholar 

  17. Hockfield S, McKay RD . Identification of major cell classes in the developing mammalian nervous system. J Neurosci 1985; 5: 3310–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lendahl U, Zimmerman LB, McKay RD . CNS stem cells express a new class of intermediate filament protein. Cell 1990; 60: 585–595.

    Article  CAS  PubMed  Google Scholar 

  19. Martynoga B, Drechsel D, Guillemot F . Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 2012; 4: 1–14.

    Article  Google Scholar 

  20. Kim J, Lo L, Dormand E, Anderson DJ . SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 2003; 38: 17–31.

    Article  CAS  PubMed  Google Scholar 

  21. Okamura Y, Saga Y . Notch signaling is required for the maintenance of enteric neural crest progenitors. Development 2008; 135: 3555–3565.

    Article  CAS  PubMed  Google Scholar 

  22. Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 2005; 118: 2849–2858.

    Article  CAS  PubMed  Google Scholar 

  23. Bakhti M, Winter C, Simons M . Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem 2011; 286: 787–796.

    Article  CAS  PubMed  Google Scholar 

  24. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20: 847–856.

    Article  CAS  PubMed  Google Scholar 

  25. Ge W, Martinowich K, Wu X, He F, Miyamoto A, Fan G et al. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res 2002; 69: 848–860.

    Article  CAS  PubMed  Google Scholar 

  26. Yu J, Astrinidis A, Howard S, Henske EP . Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am J Physiol Lung Cell Mol Physiol 2004; 286: L694–L700.

    Article  CAS  PubMed  Google Scholar 

  27. Baonza A, Freeman M . Notch signalling and the initiation of neural development in the Drosophila eye. Development 2001; 128: 3889–3898.

    CAS  PubMed  Google Scholar 

  28. Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014; 26: 707–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008; 358: 140–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonnet CS, Aldred M, von Ruhland C, Harris R, Sandford R, Cheadle JP . Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet 2009; 18: 2166–2176.

    Article  CAS  PubMed  Google Scholar 

  31. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG Jr . TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 2003; 4: 147–158.

    Article  CAS  PubMed  Google Scholar 

  32. Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 2008; 105: 19384–19389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hall DJ, Grewal SS, de la Cruz AF, Edgar BA . Rheb-TOR signaling promotes protein synthesis, but not glucose or amino acid import, in Drosophila. BMC Biol 2007; 5: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet 2009; 18: 151–163.

    Article  CAS  PubMed  Google Scholar 

  35. Karbowniczek M, Robertson GP, Henske EP . Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem 2006; 281: 25447–25456.

    Article  CAS  PubMed  Google Scholar 

  36. Karbowniczek M, Zitserman D, Khabibullin D, Hartman T, Yu J, Morrison T et al. The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development. J Clin Invest 2010; 120: 93–102.

    Article  CAS  PubMed  Google Scholar 

  37. Kenerson H, Dundon TA, Yeung RS . Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res 2005; 57: 67–75.

    Article  CAS  PubMed  Google Scholar 

  38. Knox S, Ge H, Dimitroff BD, Ren Y, Howe KA, Arsham AM et al. Mechanisms of TSC-mediated control of synapse assembly and axon guidance. PLoS One 2007; 2: e375.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee PS, Tsang SW, Moses MA, Trayes-Gibson Z, Hsiao LL, Jensen R et al. Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Am J Respir Cell Mol Biol 2010; 42: 227–234.

    Article  CAS  PubMed  Google Scholar 

  40. Ma D, Bai X, Zou H, Lai Y, Jiang Y . Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. J Biol Chem 2010; 285: 8621–8627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patch K, Stewart SR, Welch A, Ward RE . A second-site noncomplementation screen for modifiers of Rho1 signaling during imaginal disc morphogenesis in Drosophila. PLoS One 2009; 4: e7574.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M . Opposite effects of tor1 and tor2 on nitrogen starvation responses in fission yeast. Genetics 2007; 175: 1153–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson C, Bonnet C, Guy C, Idziaszczyk S, Colley J, Humphreys V et al. Tsc1 haploinsufficiency without mammalian target of rapamycin activation is sufficient for renal cyst formation in Tsc1+/- mice. Cancer Res 2006; 66: 7934–7938.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou X, Ikenoue T, Chen X, Li L, Inoki K, Guan KL . Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy. Proc Natl Acad Sci USA 2009; 106: 8923–8928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neuman NA, Henske EP . Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 2011; 3: 189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 2012; 15: 33–45.

    Article  CAS  PubMed  Google Scholar 

  47. Govindarajan B, Willoughby L, Band H, Curatolo AS, Veledar E, Chen S et al. Cooperative benefit for the combination of rapamycin and imatinib in tuberous sclerosis complex neoplasia. Vascular Cell 2012; 4: 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arbiser JL, Yeung R, Weiss SW, Arbiser ZK, Amin MB, Cohen C et al. The generation and characterization of a cell line derived from a sporadic renal angiomyolipoma: use of telomerase to obtain stable populations of cells from benign neoplasms. Am J Pathol 2001; 159: 483–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arbiser JL, Govindarajan B, Bai X, Onda H, Kazlauskas A, Lim SD et al. Functional tyrosine kinase inhibitor profiling: a generally applicable method points to a novel role of platelet-derived growth factor receptor-beta in tuberous sclerosis. Am J Pathol 2002; 161: 781–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J . Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 2007; 131: 364–377.

    Article  CAS  PubMed  Google Scholar 

  51. Lasser C, Eldh M, Lotvall J . Isolation and characterization of RNA-containing exosomes. J Vis Exp 2012; 59: e3037.

    Google Scholar 

  52. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z . Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 2010; 111: 488–496.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Maureen Murphy and Aristotelis Astreinidis for his invaluable comments. CPRIT grant RP 120168 to M Karbowniczek and the DoD grant BC 111038 to MM Markiewski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Karbowniczek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, B., Patel, J., Cho, JH. et al. Exosomes mediate the acquisition of the disease phenotypes by cells with normal genome in tuberous sclerosis complex. Oncogene 35, 3027–3036 (2016). https://doi.org/10.1038/onc.2015.358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.358

This article is cited by

Search

Quick links