Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hedgehog/Patched-associated rhabdomyosarcoma formation from delta1-expressing mesodermal cells

Subjects

Abstract

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. In children, the 2 major RMS subtypes are alveolar and embryonal RMS. Aberrant Hedgehog/Patched1 (Hh/Ptch) signaling is a hallmark of embryonal RMS. We demonstrate that mice carrying a Ptch mutation in mesodermal Delta1-expressing cells develop embryonal-like RMS at a similar rate as mice harboring a Ptch mutation in the germline or the brachury-expressing mesoderm. The tumor incidence decreases dramatically when Ptch is mutated in Myf5- or Pax3-expressing cells. No RMS develop from Myogenin/Mef2c-expressing cells. This suggests that Hh/Ptch-associated RMS are derived from Delta1-positive, Myf5-negative, Myogenin-negative and Pax3-negative mesodermal progenitors that can undergo myogenic differentiation but lack stable lineage commitment. Additional preliminary genetic data and data on mesodermal progenitors further imply an interplay of Hh/Ptch and Delta/Notch signaling activity during RMS initiation. In contrast, Wnt signals supposedly suppress RMS formation because RMS multiplicity decreases after inactivation of the Wnt-inhibitor Wif1. Finally, our results strongly suggest that the tumor-initiating event determines the lineage of RMS origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Merlino G, Helman LJ . Rhabdomyosarcoma—working out the pathways. Oncogene 1999; 18: 5340–5348.

    Article  CAS  PubMed  Google Scholar 

  2. Sebire NJ, Malone M . Myogenin and MyoD1 expression in paediatric rhabdomyosarcomas. J Clin Pathol 2003; 56: 412–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gurney JG, Young JL Jr, Roffers SD, Smith MA, Bunin GR Soft tissue sarcomas. In Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995, 1999; NIH Pub. No. 99-4649 111–124.

  4. Rubin BP, Nishijo K, Chen HI, Yi X, Schuetze DP, Pal R et al. Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell 2011; 19: 177–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 2007; 21: 1382–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004; 18: 2614–2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller C, Hansen MS, Coffin CM, Capecchi MR . Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 2004; 18: 2608–2613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abraham J, Nunez-Alvarez Y, Hettmer S, Carrio E, Chen HI, Nishijo K et al. Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes Dev 2014; 28: 1578–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zibat A, Missiaglia E, Rosenberger A, Pritchard-Jones K, Shipley J, Hahn H et al. Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene 2010; 29: 6323–6330.

    Article  CAS  PubMed  Google Scholar 

  10. Pressey JG, Anderson JR, Crossman DK, Lynch JC, Barr FG . Hedgehog pathway activity in pediatric embryonal rhabdomyosarcoma and undifferentiated sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2011; 57: 930–938.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A . Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 1998; 4: 619–622.

    Article  CAS  PubMed  Google Scholar 

  12. Nitzki F, Zibat A, Frommhold A, Schneider A, Schulz-Schaeffer W, Braun T et al. Uncommitted precursor cells might contribute to increased incidence of embryonal rhabdomyosarcoma in heterozygous Patched1-mutant mice. Oncogene 2011; 30: 4428–4436.

    Article  CAS  PubMed  Google Scholar 

  13. Dequeant ML, Pourquie O . Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 2008; 9: 370–382.

    Article  CAS  PubMed  Google Scholar 

  14. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA . Wnt signaling in myogenesis. Trends Cell Biol 2012; 22: 602–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gianakopoulos PJ, Mehta V, Voronova A, Cao Y, Yao Z, Coutu J et al. MyoD directly up-regulates premyogenic mesoderm factors during induction of skeletal myogenesis in stem cells. J Biol Chem 2011; 286: 2517–2525.

    Article  CAS  PubMed  Google Scholar 

  16. Feller J, Schneider A, Schuster-Gossler K, Gossler A . Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev 2008; 22: 2166–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beckers J, Caron A, Hrabe de Angelis M, Hans S, Campos-Ortega JA, Gossler A . Distinct regulatory elements direct delta1 expression in the nervous system and paraxial mesoderm of transgenic mice. Mech Dev 2000; 95: 23–34.

    Article  CAS  PubMed  Google Scholar 

  18. Ji SJ, Zhuang B, Falco C, Schneider A, Schuster-Gossler K, Gossler A et al. Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons. Devel Biol 2006; 297: 249–261.

    Article  CAS  Google Scholar 

  19. Hatley ME, Tang W, Garcia MR, Finkelstein D, Millay DP, Liu N et al. A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 2012; 22: 536–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tews D, Wabitsch M . Renaissance of brown adipose tissue. Horm Res Paediatr 2011; 75: 231–239.

    Article  CAS  PubMed  Google Scholar 

  21. Engleka KA, Gitler AD, Zhang M, Zhou DD, High FA, Epstein JA . Insertion of Cre into the Pax3 locus creates a new allele of Splotch and identifies unexpected Pax3 derivatives. Dev Biol 2005; 280: 396–406.

    Article  CAS  PubMed  Google Scholar 

  22. Charytonowicz E, Cordon-Cardo C, Matushansky I, Ziman M . Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell? Cancer Lett 2009; 279: 126–136.

    Article  CAS  PubMed  Google Scholar 

  23. Parker MH, Seale P, Rudnicki MA . Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 2003; 4: 497–507.

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez-Gurmaches J, Guertin DA . Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun 2014; 5: 4099.

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci USA 2005; 102: 1082–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng TC, Wallace MC, Merlie JP, Olson EN . Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 1993; 261: 215–218.

    Article  CAS  PubMed  Google Scholar 

  27. Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN . The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 2001; 128: 4623–4633.

    CAS  PubMed  Google Scholar 

  28. Buckingham M . Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 2001; 11: 440–448.

    Article  CAS  PubMed  Google Scholar 

  29. Sasaki H, Hui C, Nakafuku M, Kondoh H . A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 1997; 124: 1313–1322.

    CAS  PubMed  Google Scholar 

  30. Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL . Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 1994; 162: 402–413.

    Article  CAS  PubMed  Google Scholar 

  31. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M . Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 1997; 89: 127–138.

    Article  CAS  PubMed  Google Scholar 

  32. Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ . Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 2008; 27: 1489–1500.

    Article  CAS  PubMed  Google Scholar 

  33. Benito-Gonzalez A, Doetzlhofer A . Hey1 and hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of hedgehog signaling. J Neurosci 2014; 34: 12865–12876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belyea B, Kephart JG, Blum J, Kirsch DG, Linardic CM . Embryonic signaling pathways and rhabdomyosarcoma: contributions to cancer development and opportunities for therapeutic targeting. Sarcoma 2012; 2012: 406239.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper SA . Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 1996; 10: 313–324.

    Article  CAS  PubMed  Google Scholar 

  36. Ikeya M, Takada S . Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 1998; 125: 4969–4976.

    CAS  PubMed  Google Scholar 

  37. Tamplin OJ, Cox BJ, Rossant J . Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord. Dev Biol 2011; 360: 415–425.

    Article  CAS  PubMed  Google Scholar 

  38. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999; 398: 431–436.

    Article  CAS  PubMed  Google Scholar 

  39. Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 2009; 119: 837–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Surmann-Schmitt C, Widmann N, Dietz U, Saeger B, Eitzinger N, Nakamura Y et al. Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis. J Cell Sci 2009; 122: 3627–3637.

    Article  CAS  PubMed  Google Scholar 

  41. Chen EY, DeRan MT, Ignatius MS, Grandinetti KB, Clagg R, McCarthy KM et al. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/beta-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Nat Acad Sci USA 2014; 111: 5349–5354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 2010; 465: 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roma J, Masia A, Reventos J, Sanchez de Toledo J, Gallego S . Notch pathway inhibition significantly reduces rhabdomyosarcoma invasiveness and mobility in vitro. Clin Cancer Res 2011; 17: 505–513.

    Article  CAS  PubMed  Google Scholar 

  44. Ecke I, Rosenberger A, Obenauer S, Dullin C, Aberger F, Kimmina S et al. Cyclopamine treatment of full-blown Hh/Ptch-associated RMS partially inhibits Hh/Ptch signaling, but not tumor growth. Mol Carcinog 2008; 47: 361–372.

    Article  CAS  PubMed  Google Scholar 

  45. Rajurkar M, Huang H, Cotton JL, Brooks JK, Sicklick J, McMahon AP et al. Distinct cellular origin and genetic requirement of Hedgehog-Gli in postnatal rhabdomyosarcoma genesis. Oncogene 2014; 33: 5370–5378.

    Article  CAS  PubMed  Google Scholar 

  46. Zibat A, Uhmann A, Nitzki F, Wijgerde M, Frommhold A, Heller T et al. Time-point and dosage of gene inactivation determine the tumor spectrum in conditional Ptch knockouts. Carcinogenesis 2009; 30: 918–926.

    Article  CAS  PubMed  Google Scholar 

  47. Diaconescu S, Burlea M, Miron I, Aprodu SG, Mihaila D, Olaru C et al. Childhood rhabdomyosarcoma. Anatomo-clinical and therapeutic study on 25 cases. Surgical implications. Rom J Morphol Embryol 2013; 54: 531–537.

    PubMed  Google Scholar 

  48. Hahn H, Nitzki F, Schorban T, Hemmerlein B, Threadgill D, Rosemann M . Genetic mapping of a Ptch1-associated rhabdomyosarcoma susceptibility locus on mouse chromosome 2. Genomics 2004; 84: 853–858.

    Article  CAS  PubMed  Google Scholar 

  49. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  50. Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 2002; 14: 637–645.

    Article  CAS  PubMed  Google Scholar 

  51. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W . beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105: 533–545.

    Article  CAS  PubMed  Google Scholar 

  52. Stock M, Bohm C, Scholtysek C, Englbrecht M, Furnrohr BG, Klinger P et al. Wnt inhibitory factor 1 deficiency uncouples cartilage and bone destruction in tumor necrosis factor alpha-mediated experimental arthritis. Arthritis Rheum 2013; 65: 2310–2322.

    Article  CAS  PubMed  Google Scholar 

  53. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC . An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000; 407: 535–538.

    Article  CAS  PubMed  Google Scholar 

  54. Uhmann A, Dittmann K, Nitzki F, Dressel R, Koleva M, Frommhold A et al. The Hedgehog receptor Patched controls lymphoid lineage commitment. Blood 2007; 110: 1814–1823.

    Article  CAS  PubMed  Google Scholar 

  55. Skerjanc IS . Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med 1999; 9: 139–143.

    Article  CAS  PubMed  Google Scholar 

  56. Petropoulos H, Gianakopoulos PJ, Ridgeway AG, Skerjanc IS . Disruption of Meox or Gli activity ablates skeletal myogenesis in P19 cells. J Biol Chem 2004; 279: 23874–23881.

    Article  CAS  PubMed  Google Scholar 

  57. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA . Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 2002; 99: 14071–14076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lars Wittler and Ludger Hartmann for Wntvt/vt mice, Walter Birchmeier and Felix Brembeck for β-catflox/flox mice and Christoph Englert and David Thomas for Wif1−/− mice. We are grateful to Susan Peter and Stefan Wolf for excellent animal care. We thank Anke Frommhold, Ina Heβ and Tobias Goldak for technical assistance and Walter Schulz-Schaeffer (Institute of Neuropathology, University Medical Center Göttingen) and Ilona Skerjanc for useful advice. This work was supported by the DFG Grant HA2197/7-1 to HH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Hahn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitzki, F., Cuvelier, N., Dräger, J. et al. Hedgehog/Patched-associated rhabdomyosarcoma formation from delta1-expressing mesodermal cells. Oncogene 35, 2923–2931 (2016). https://doi.org/10.1038/onc.2015.346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.346

Search

Quick links