Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Grb2 depletion under non-stimulated conditions inhibits PTEN, promotes Akt-induced tumor formation and contributes to poor prognosis in ovarian cancer

Subjects

Abstract

In the absence of extracellular stimulation the adaptor protein growth factor receptor-bound protein (Grb2) and the phospholipase Plcγ1 compete for the same binding site on fibroblast growth factor receptor 2 (FGFR2). Reducing cellular Grb2 results in upregulation of Plcγ1 and depletion of the phospholipid PI(4,5)P2. The functional consequences of this event on signaling pathways are unknown. We show that the decrease in PI(4,5)P2 level under non-stimulated conditions inhibits PTEN activity leading to the aberrant activation of the oncoprotein Akt. This results in excessive cell proliferation and tumor progression in a xenograft mouse model. As well as defining a novel mechanism of Akt phosphorylation with important therapeutic consequences, we also demonstrate that differential expression levels of FGFR2, Plcγ1 and Grb2 correlate with patient survival. Oncogenesis through fluctuation in the expression levels of these proteins negates extracellular stimulation or mutation and defines them as novel prognostic markers in ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Storz P, Doppler H, Copland JA, Simpson KJ, Toker A . FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases. Mol Cell Biol 2009; 29: 4906–4917.

    Article  CAS  Google Scholar 

  2. Mahbub Hasan AK, Ijiri T, Sato K . Involvement of Src in the adaptation of cancer cells under microenvironmental stresses. J Signal Transduct 2012; 2012: 483796.

    Article  CAS  Google Scholar 

  3. Risbud MV, Fertala J, Vresilovic EJ, Albert TJ, Shapiro IM . Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine 2005; 30: 882–889.

    Article  Google Scholar 

  4. Yamamoto N, Mammadova G, Song RXD, Fukami Y, Sato K-i . Tyrosine phosphorylation of p145met mediated by EGFR and Src is required for serum-independent survival of human bladder carcinoma cells. J Cell Sci 2006; 119: 4623–4633.

    Article  CAS  Google Scholar 

  5. Ching JK, Rajguru P, Marupudi N, Banerjee S, Fisher JS . A role for AMPK in increased insulin action after serum starvation. Am J Physiol Cell Physiol 2010; 299: 1171–1179.

    Article  Google Scholar 

  6. Pirkmajer S, Chibalin AV . Serum starvation: caveat emptor. Am J Physiol Cell Physiol 2011; 301: C272–C279.

    Article  CAS  Google Scholar 

  7. Troncoso R, Vicencio JM, Parra V, Nemchenko A, Kawashima Y, Del Campo A et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovas Res 2012; 93: 320–329.

    Article  CAS  Google Scholar 

  8. Gauglhofer C, Sagmeister S, Schrottmaier W, Fischer C, Rodgarkia-Dara C, Mohr T et al. Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology 2011; 53: 854–864.

    Article  CAS  Google Scholar 

  9. Ahmed Z, Lin CC, Suen KM, Melo FA, Levitt JA, Suhling K et al. Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. J Cell Biol 2013; 200: 493–504.

    Article  CAS  Google Scholar 

  10. Timsah Z, Ahmed Z, Lin CC, Melo FA, Stagg LJ, Leonard PG et al. Competition between Grb2 and Plcgamma1 for FGFR2 regulates basal phospholipase activity and invasion. Nat Struct Mol Biol 2014; 21: 180–188.

    Article  CAS  Google Scholar 

  11. Byron SA, Pollock PM . FGFR2 as a molecular target in endometrial cancer. Future Oncol 2009; 5: 27–32.

    Article  CAS  Google Scholar 

  12. Katoh Y, Katoh M . FGFR2-related pathogenesis and FGFR2-targeted therapeutics. Int J Mol Med 2009; 23: 307–311.

    CAS  PubMed  Google Scholar 

  13. Cole C, Lau S, Backen A, Clamp A, Rushton G, Dive C et al. Inhibition of FGFR2 and FGFR1 increases cisplatin sensitivity in ovarian cancer. Cancer Biol Ther 2010; 10: 495–504.

    Article  CAS  Google Scholar 

  14. Matsuda Y, Ueda J, Ishiwata T . Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. Pathol Res Internat 2012; 2012: 574768.

    Article  Google Scholar 

  15. Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 2003; 160: 375–385.

    Article  CAS  Google Scholar 

  16. Thapa N, Sun Y, Schramp M, Choi S, Ling K, Anderson RA . Phosphoinositide signaling regulates the exocyst complex and polarized integrin trafficking in directionally migrating cells. Dev Cell 2012; 22: 116–130.

    Article  CAS  Google Scholar 

  17. Vivanco I, Sawyers CL . The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  Google Scholar 

  18. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001; 70: 535–602.

    Article  CAS  Google Scholar 

  19. Franke TF, Kaplan DR, Cantley LC, Toker A . Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275: 665–668.

    Article  CAS  Google Scholar 

  20. Engelman JA, Luo J, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    Article  CAS  Google Scholar 

  21. Campbell RB, Liu FH, Ross AH . Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2003; 278: 33617–33620.

    Article  CAS  Google Scholar 

  22. Redfern RE, Redfern D, Furgason ML, Munson M, Ross AH, Gericke A . PTEN phosphatase selectively binds phosphoinositides and undergoes structural changes. Biochemistry 2008; 47: 2162–2171.

    Article  CAS  Google Scholar 

  23. Altomare DA, Testa JR . Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24: 7455–7464.

    Article  CAS  Google Scholar 

  24. Janku F, Wheler JJ, Westin SN, Moulder SL, Naing A, Tsimberidou AM et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J Clin Oncol 2012; 30: 777–782.

    Article  CAS  Google Scholar 

  25. Khan KH, Yap TA, Yan L, Cunningham D . Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer 2013; 32: 253–265.

    Article  CAS  Google Scholar 

  26. Mazzoletti M, Broggini M . PI3K/AKT/mTOR inhibitors in ovarian cancer. Curr Med Chem 2010; 17: 4433–4447.

    Article  CAS  Google Scholar 

  27. Song MS, Salmena L, Pandolfi PP . The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13: 283–296.

    Article  CAS  Google Scholar 

  28. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999; 274: 22699–22704.

    Article  CAS  Google Scholar 

  29. Pan J, Chang Q, Wang X, Son Y, Zhang Z, Chen G et al. Reactive oxygen species-activated Akt/ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS 2B cells. Chem Res Toxicol 2010; 23: 568–577.

    Article  CAS  Google Scholar 

  30. Ahmed Z, Schuller AC, Suhling K, Tregidgo C, Ladbury JE . Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem J 2008; 413: 37–49.

    Article  CAS  Google Scholar 

  31. Lin C-C, Melo FA, Ghosh R, Suen KM, Stagg LJ, Kirkpatrick J et al. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 2012; 149: 1514–1524.

    Article  CAS  Google Scholar 

  32. Turke AB, Song Y, Costa C, Cook R, Arteaga CL, Asara JM et al. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res 2012; 72: 3228–3237.

    Article  CAS  Google Scholar 

  33. Cully M, You H, Levine AJ, Mak TW . Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6: 184–192.

    Article  CAS  Google Scholar 

  34. Casamayor A, Morrice NA, Alessi DR . Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochemical J 1999; 342: 287–292.

    Article  CAS  Google Scholar 

  35. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, Wakelam MJ et al. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat Methods 2011; 8: 267–272.

    Article  CAS  Google Scholar 

  36. Yang K, Han X . Accurate quantification of lipid species by electrospray ionization mass spectrometry - meet a key challenge in lipidomics. Metabolites 2011; 1: 21–40.

    Article  CAS  Google Scholar 

  37. Rotblat B, Prior IA, Muncke C, Parton RG, Kloog Y, Henis YI et al. Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol Cell Biol 2004; 24: 6799–6810.

    Article  CAS  Google Scholar 

  38. Zhou Y, Liang H, Rodkey T, Ariotti N, Parton RG, Hancock JF . Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters. Mol Cell Biol 2014; 34: 862–876.

    Article  Google Scholar 

  39. Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B et al. PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathologica 2011; 121: 407–420.

    Article  CAS  Google Scholar 

  40. Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK et al. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 2004; 23: 5853–5857.

    Article  CAS  Google Scholar 

  41. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 2008; 14: 5198–5208.

    Article  CAS  Google Scholar 

  42. Ahmed Z, George R, Lin CC, Suen KM, Levitt JA, Suhling K et al. Direct binding of Grb2 SH3 domain to FGFR2 regulates SHP2 function. Cell Signal 2010; 22: 23–33.

    Article  CAS  Google Scholar 

  43. Ooms LM, Dyson JM, Kong AM, Mitchell CA . Analysis of phosphatidylinositol 3,4,5 trisphosphate 5-phosphatase activity by in vitro and in vivo assays. Methods Mol Biol 2009; 462: 223–239.

    CAS  PubMed  Google Scholar 

  44. Fry MJ . Phosphoinositide (PI) 3-kinase assays. Methods Mol Biol 2009; 462: 345–362.

    CAS  PubMed  Google Scholar 

  45. König S, Hoffmann M, Mosblech A, Heilmann I . Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin-layer chromatography and gas chromatography. Analyt Biochem 2008; 378: 197–201.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the G. Harold and Leila Y. Mathers Charitable Foundation. This work was supported by NIH grants U54CA151668, P50 CA083639, P50 CA098258 and by the RGK Foundation and the Gilder Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Ladbury.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timsah, Z., Ahmed, Z., Ivan, C. et al. Grb2 depletion under non-stimulated conditions inhibits PTEN, promotes Akt-induced tumor formation and contributes to poor prognosis in ovarian cancer. Oncogene 35, 2186–2196 (2016). https://doi.org/10.1038/onc.2015.279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.279

This article is cited by

Search

Quick links