Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclin-dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway

Subjects

Abstract

Cyclin-dependent kinase 2 (CDK2) is a known regulator in the cell cycle control of the G1/S and S/G2 transitions. However, the role of CDK2 in tumorigenesis is controversial. Evidence from knockout mice as well as colon cancer cell lines indicated that CDK2 is dispensable for cell proliferation. In this study, we found that ectopic CDK2 enhances Ras (G12V)-induced foci formation and knocking down CDK2 expression markedly decreases epidermal growth factor (EGF)-induced cell transformation mediated through the downregulation of c-fos expression. Interestingly, CDK2 directly phosphorylates ELK4 at Thr194 and Ser387 and regulates the ELK4 transcriptional activity, which serves as a mechanism to regulate c-fos expression. In addition, ELK4 is overexpressed in melanoma and knocking down the ELK4 or CDK2 expression significantly attenuated the malignant phenotype of melanoma cells. Taken together, our study reveals a novel function of CDK2 in EGF-induced cell transformation and the associated signal transduction pathways. This indicates that CDK2 is a useful molecular target for the chemoprevention and therapy against skin cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wu W S, Lin J K, Wu F Y . Differential induction of c-fos and c-jun proto-oncogenes and AP-1 activity by tumor promoter 12-O-tetradecanoyl phorbol 13-acetate in cells at different stages of tumor promotion in vitro. Oncogene 1992; 7: 2287–2294.

    CAS  PubMed  Google Scholar 

  2. Skouv J, Christensen B, Skibshoj I, Autrup H . The skin tumor-promoter 12-O-tetradecanoylphorbol-13-acetate induces transcription of the c-fos proto-oncogene in human bladder epithelial cells. Carcinogenesis 1986; 7: 331–333.

    Article  CAS  Google Scholar 

  3. Li J, Gorospe M, Barnes J, Liu Y . Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J Biol Chem 2003; 278: 13183–13191.

    Article  CAS  Google Scholar 

  4. Elkeles A, Juven-Gershon T, Israeli D, Wilder S, Zalcenstein A, Oren M . The c-fos proto-oncogene is a target for transactivation by the p53 tumor suppressor. Mol Cell Biol 1999; 19: 2594–2600.

    Article  CAS  Google Scholar 

  5. Janknecht R, Cahill M A, Nordheim A . Signal integration at the c-fos promoter. Carcinogenesis 1995; 16: 443–450.

    Article  CAS  Google Scholar 

  6. Hill C S, Treisman R . Differential activation of c-fos promoter elements by serum, lysophosphatidic acid, G proteins and polypeptide growth factors. Embo J 1995; 14: 5037–5047.

    Article  CAS  Google Scholar 

  7. Janknecht R, Nordheim A . Regulation of the c-fos promoter by the ternary complex factor Sap-1a and its coactivator CBP. Oncogene 1996; 12: 1961–1969.

    CAS  PubMed  Google Scholar 

  8. Treisman R . Journey to the surface of the cell: Fos regulation and the SRE. Embo J 1995; 14: 4905–4913.

    Article  CAS  Google Scholar 

  9. Graham R, Gilman M . Distinct protein targets for signals acting at the c-fos serum response element. Science 1991; 251: 189–192.

    Article  CAS  Google Scholar 

  10. Hill C S, Wynne J, Treisman R . Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. Embo J 1994; 13: 5421–5432.

    Article  CAS  Google Scholar 

  11. Kortenjann M, Thomae O, Shaw P E . Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol 1994; 14: 4815–4824.

    Article  CAS  Google Scholar 

  12. Ferguson K L, Callaghan S M, O'Hare M J, Park D S, Slack R S . The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. J Biol Chem 2000; 275: 33593–33600.

    Article  CAS  Google Scholar 

  13. Li J, Tsai M D . Novel insights into the INK4-CDK4/6-Rb pathway: counter action of gankyrin against INK4 proteins regulates the CDK4-mediated phosphorylation of Rb. Biochemistry 2002; 41: 3977–3983.

    Article  CAS  Google Scholar 

  14. Wallace M, Ball K L . Docking-dependent regulation of the Rb tumor suppressor protein by Cdk4. Mol Cell Biol 2004; 24: 5606–5619.

    Article  CAS  Google Scholar 

  15. Cen L, Carlson B L, Schroeder M A, Ostrem J L, Kitange G J, Mladek A C et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro Oncol 2012; 14: 870–881.

    Article  CAS  Google Scholar 

  16. Hannon G J, Demetrick D, Beach D . Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev 1993; 7: 2378–2391.

    Article  CAS  Google Scholar 

  17. Berthet C, Klarmann K D, Hilton M B, Suh H C, Keller J R, Kiyokawa H et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 2006; 10: 563–573.

    Article  CAS  Google Scholar 

  18. Akiyama T, Yoshida T, Tsujita T, Shimizu M, Mizukami T, Okabe M et al. G1 phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cip1/WAF1/Sdi1 in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res 1997; 57: 1495–1501.

    CAS  PubMed  Google Scholar 

  19. Hua X H, Newport J . Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J Cell Biol 1998; 140: 271–281.

    Article  CAS  Google Scholar 

  20. Findeisen M, El-Denary M, Kapitza T, Graf R, Strausfeld U . Cyclin A-dependent kinase activity affects chromatin binding of ORC, Cdc6, and MCM in egg extracts of Xenopus laevis. Eur J Biochem 1999; 264: 415–426.

    Article  CAS  Google Scholar 

  21. Ishimi Y, Komamura-Kohno Y, You Z, Omori A, Kitagawa M . Inhibition of Mcm4,6,7 helicase activity by phosphorylation with cyclin A/Cdk2. J Biol Chem 2000; 275: 16235–16241.

    Article  CAS  Google Scholar 

  22. Volm M, Koomagi R, Stammler G, Rittgen W, Zintl F, Sauerbrey A . Prognostic implications of cyclins (D1, E, A), cyclin-dependent kinases (CDK2, CDK4) and tumor-suppressor genes (pRB, p16INK4A) in childhood acute lymphoblastic leukemia. Int J Cancer 1997; 74: 508–512.

    Article  CAS  Google Scholar 

  23. Zhou Y, Wang S, Gobl A, Oberg K . Inhibition of CDK2, CDK4 and cyclin E and increased expression of p27Kip1 during treatment with interferon-alpha in carcinoid tumor cells. J Biol Regul Homeost Agents 1999; 13: 207–215.

    CAS  PubMed  Google Scholar 

  24. Calbo J, Serna C, Garriga J, Grana X, Mazo A . The fate of pancreatic tumor cell lines following p16 overexpression depends on the modulation of CDK2 activity. Cell Death Differ 2004; 11: 1055–1065.

    Article  CAS  Google Scholar 

  25. Tetsu O, McCormick F . Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 2003; 3: 233–245.

    Article  CAS  Google Scholar 

  26. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P . Cdk2 knockout mice are viable. Curr Biol 2003; 13: 1775–1785.

    Article  CAS  Google Scholar 

  27. Martin A, Odajima J, Hunt S L, Dubus P, Ortega S, Malumbres M et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 2005; 7: 591–598.

    Article  CAS  Google Scholar 

  28. Janknecht R, Hunter T . Activation of the Sap-1a transcription factor by the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase. J Biol Chem 1997; 272: 4219–4224.

    Article  CAS  Google Scholar 

  29. Masutani H, Magnaghi-Jaulin L, Ait-Si-Ali S, Groisman R, Robin P, Harel-Bellan A . Activation of the c-fos SRE through SAP-1a. Oncogene 1997; 15: 1661–1669.

    Article  CAS  Google Scholar 

  30. Janknecht R, Hunter T . Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. Embo J 1997; 16: 1620–1627.

    Article  CAS  Google Scholar 

  31. Takuwa N, Takuwa Y . Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol 1997; 17: 5348–5358.

    Article  CAS  Google Scholar 

  32. Chiariello M, Gomez E, Gutkind J S . Regulation of cyclin-dependent kinase (Cdk) 2 Thr-160 phosphorylation and activity by mitogen-activated protein kinase in late G1 phase. Biochem J 2000; 349: 869–876.

    Article  CAS  Google Scholar 

  33. Takahashi S, Pearse A D, Marks R . Expression of c-fos proto-oncogene mRNA in non-melanoma skin cancer. J Dermatol Sci 1994; 7: 54–62.

    Article  CAS  Google Scholar 

  34. Guinea-Viniegra J, Zenz R, Scheuch H, Jimenez M, Bakiri L, Petzelbauer P et al. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17. J Clin Invest 2012; 122: 2898–2910.

    Article  CAS  Google Scholar 

  35. Saez E, Rutberg S E, Mueller E, Oppenheim H, Smoluk J, Yuspa S H et al. c-fos is required for malignant progression of skin tumors. Cell 1995; 82: 721–732.

    Article  CAS  Google Scholar 

  36. Gebhardt C, Breitenbach U, Richter K H, Furstenberger G, Mauch C, Angel P et al. c-Fos-dependent induction of the small ras-related GTPase Rab11a in skin carcinogenesis. Am J Pathol 2005; 167: 243–253.

    Article  CAS  Google Scholar 

  37. Hjortoe G M, Weilguny D, Willumsen B M . Elk3 from hamster—a ternary complex factor with strong transcriptional repressor activity. DNA Cell Biol 2005; 24: 35–42.

    Article  CAS  Google Scholar 

  38. Chen Y H, Layne M D, Chung S W, Ejima K, Baron R M, Yet S F et al. Elk-3 is a transcriptional repressor of nitric-oxide synthase 2. J Biol Chem 2003; 278: 39572–39577.

    Article  CAS  Google Scholar 

  39. Ayadi A, Suelves M, Dolle P, Wasylyk B . Net an Ets ternary complex transcription factor, is expressed in sites of vasculogenesis, angiogenesis, and chondrogenesis during mouse development. Mech Dev 2001; 102: 205–208.

    Article  CAS  Google Scholar 

  40. Mo Y, Vaessen B, Johnston K, Marmorstein R . Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol Cell 1998; 2: 201–212.

    Article  CAS  Google Scholar 

  41. Mo Y, Vaessen B, Johnston K, Marmorstein R . Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. Nat Struct Biol 2000; 7: 292–297.

    Article  CAS  Google Scholar 

  42. Chai Y, Chipitsyna G, Cui J, Liao B, Liu S, Aysola K et al. c-Fos oncogene regulator Elk-1 interacts with BRCA1 splice variants BRCA1a/1b and enhances BRCA1a/1b-mediated growth suppression in breast cancer cells. Oncogene 2001; 20: 1357–1367.

    Article  CAS  Google Scholar 

  43. Cho Y Y, Tang F, Yao K, Lu C, Zhu F, Zheng D et al. Cyclin-dependent kinase-3-mediated c-Jun phosphorylation at Ser63 and Ser73 enhances cell transformation. Cancer Res 2009; 69: 272–281.

    Article  CAS  Google Scholar 

  44. Zheng D, Cho Y Y, Lau A T, Zhang J, Ma W Y, Bode A M et al. Cyclin-dependent kinase 3-mediated activating transcription factor 1 phosphorylation enhances cell transformation. Cancer Res 2008; 68: 7650–7660.

    Article  CAS  Google Scholar 

  45. Vanden Bush T J, Bishop G A . CDK-mediated regulation of cell functions via c-Jun phosphorylation and AP-1 activation. PLoS One 2011; 6: e19468.

    Article  CAS  Google Scholar 

  46. Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan A M . SLC45A3-ELK4 chimera in prostate cancer: spotlight on cis-splicing. Cancer Discov 2012; 2: 582–585.

    Article  CAS  Google Scholar 

  47. Rickman D S, Pflueger D, Moss B, VanDoren V E, Chen C X, de la Taille A et al. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 2009; 69: 2734–2738.

    Article  CAS  Google Scholar 

  48. Maher C A, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 2009; 458: 97–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Hormel Foundation and National Institutes of Health grants ZD: CA172457, CA1669011, CA827502, R37, CA081064 and by grant no. 81225013, 81430075, 2015JJ2161 in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Dong or X Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Zeng, W., Su, J. et al. Cyclin-dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway. Oncogene 35, 1170–1179 (2016). https://doi.org/10.1038/onc.2015.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.175

This article is cited by

Search

Quick links