Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel small molecules disrupting Hec1/Nek2 interaction ablate tumor progression by triggering Nek2 degradation through a death-trap mechanism

Abstract

Hec1 (highly expressed in cancer 1) or Nek2 (NIMA-related kinase 2) is often overexpressed in cancers with poor prognosis. Both are critical mitotic regulators, and phosphorylation of Hec1 S165 by Nek2 is required for proper chromosome segregation. Therefore, inactivation of Hec1 and Nek2 by targeting their interaction with small molecules represents an ideal strategy for tackling these types of cancers. Here we showed that new derivatives of INH (inhibitor for Nek2 and Hec1 binding) bind to Hec1 at amino acids 394–408 on W395, L399 and K400 residues, effectively blocking Hec1 phosphorylation on S165 by Nek2, and killing cancer cells at the nanomolar range. Mechanistically, the D-box (destruction-box) region of Nek2 specifically binds to Hec1 at amino acids 408–422, immediately adjacent to the INH binding motif. Subsequent binding of Nek2 to INH-bound Hec1 triggered proteasome-mediated Nek2 degradation, whereas the Hec1 binding defective Nek2 mutant, Nek2 R361L, resisted INH-induced Nek2 degradation. This finding unveils a novel drug-action mechanism where the binding of INHs to Hec1 forms a virtual death-trap to trigger Nek2 degradation and eventually cell death. Furthermore, analysis of the gene expression profiles of breast cancer patient samples revealed that co-elevated expressions of Hec1 and Nek2 correlated with the shortest survival. Treatment of mice with this kind of tumor with INHs significantly suppressed tumor growth without obvious toxicity. Taken together, the new INH derivatives are suitable for translation into clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Foley EA, Kapoor TM . Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 2013; 14: 25–37.

    Article  CAS  PubMed  Google Scholar 

  2. Walczak CE, Cai S, Khodjakov A . Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 2010; 11: 91–102.

    Article  CAS  PubMed  Google Scholar 

  3. Rath O, Kozielski F . Kinesins and cancer. Nat Rev Cancer 2012; 12: 527–539.

    Article  CAS  PubMed  Google Scholar 

  4. Chan KS, Koh CG, Li HY . Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis 2012; 3: e411.

    Article  PubMed  Google Scholar 

  5. Jordan M, Wilson L . Microtubules as a target for anticancer drugs. Nat Rev Cancer 2006; 4: 253–265.

    Article  Google Scholar 

  6. Perez EA . Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 2009; 8: 2086–2095.

    Article  CAS  PubMed  Google Scholar 

  7. Rowinsky E . The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 1997; 48: 353–374.

    Article  CAS  Google Scholar 

  8. Sakowicz R, Finer JT, Beraud C, Crompton A, Lewis E, Fritsch A et al. Antitumor activity of a kinesin inhibitor. Cancer Res 2004; 64: 3276–3280.

    Article  CAS  PubMed  Google Scholar 

  9. Schmit TL, Ahmad N . Regulation of mitosis via mitotic kinases: new opportunities for cancer management. Mol Cancer Ther 2007; 6: 1920–1931.

    Article  CAS  PubMed  Google Scholar 

  10. Jackson JR, Patrick DR, Dar MM, Huang PS . Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007; 7: 107–117.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Riley DJ, Chen PL, Lee WH . HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol Cell Biol 1997; 17: 6049–6056.

    Article  CAS  PubMed  Google Scholar 

  12. Sundin LJ, Guimaraes GJ, Deluca JG . The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol Biol Cell 2011; 22: 759–768.

    Article  CAS  PubMed  Google Scholar 

  13. Umbreit NT, Gestaut DR, Tien JF, Vollmar BS, Gonen T, Asbury CL et al. The Ndc80 kinetochore complex directly modulates microtubule dynamics. Proc Natl Acad Sci USA 2012; 109: 16113–16118.

    Article  CAS  PubMed  Google Scholar 

  14. Martin-Lluesma S, Stucke VM, Nigg EA . Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 2002; 297: 2267–2270.

    Article  CAS  PubMed  Google Scholar 

  15. Meraldi P, Draviam VM, Sorger PK . Timing and checkpoints in the regulation of mitotic progression. Dev Cell 2004; 7: 45–60.

    Article  CAS  Google Scholar 

  16. Lin YT, Chen Y, Wu G, Lee WH . Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control. Oncogene 2006; 25: 6901–6914.

    Article  CAS  Google Scholar 

  17. Wei R, Ngo B, Wu G, Lee WH . Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint. Mol Biol Cell 2011; 22: 3584–3594.

    Article  CAS  PubMed  Google Scholar 

  18. DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED . Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006; 127: 969–982.

    Article  CAS  PubMed  Google Scholar 

  19. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    Article  CAS  PubMed  Google Scholar 

  20. Glinsky GV, Berezovska O, Glinskii AB . Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115: 1503–1521.

    Article  CAS  PubMed  Google Scholar 

  21. Diaz-Rodriguez E, Sotillo R, Schvartzman JM, Benezra R . Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 2008; 105: 16719–16724.

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Yang L, Scudiero DA, Miller SA, Yu ZX, Stukenberg PT et al. Development of recombinant adeno-associated virus vectors carrying small interfering RNA (shHec1)-mediated depletion of kinetochore Hec1 protein in tumor cells. Gene Ther 2007; 14: 814–827.

    Article  CAS  PubMed  Google Scholar 

  23. Gurzov EN, Izquierdo M . RNA interference against Hec1 inhibits tumor growth in vivo. Gene Ther 2006; 13: 1–7.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Riley DJ, Zheng L, Chen PL, Lee WH . Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation. J Biol Chem 2002; 277: 49408–49416.

    Article  CAS  PubMed  Google Scholar 

  25. Wu G, Qiu XL, Zhou L, Zhu J, Chamberlin R, Lau J et al. Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal. Cancer Res 2008; 68: 8393–8399.

    Article  CAS  PubMed  Google Scholar 

  26. Qiu X.L, Li G, Wu G, Zhu J, Zhou L, Chen PL et al. Synthesis and biological evaluation of a series of novel inhibitor of Nek2/Hec1 analogues. J Med Chem 2009; 52: 1757–1767.

    Article  CAS  PubMed  Google Scholar 

  27. Fry AM, Meraldi P, Nigg EA . A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 1998; 17: 470–481.

    Article  CAS  PubMed  Google Scholar 

  28. Fry AM . The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 2002; 21: 6184–6194.

    Article  CAS  PubMed  Google Scholar 

  29. Hayward DG, Fry AM . Nek2 kinase in chromosome instability and cancer. Cancer Lett 2006; 237: 155–166.

    Article  CAS  PubMed  Google Scholar 

  30. Vitale I, Galluzzi L, Castedo M, Kroemer G . Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011; 12: 385–392.

    Article  CAS  PubMed  Google Scholar 

  31. Schmid I, Uittenbogaart CH, Giorgi JV . Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry 1994; 15: 12–20.

    Article  CAS  PubMed  Google Scholar 

  32. Ngo B, Hu CM, Guo XE, Ngo B, Wei R, Zhu J et al. Complementary interhelical interactions between three buried Glu-Lys pairs within three heptad repeats are essential for Hec1-Nuf2 heterodimerization and mitotic progression. J Biol Chem 2013; 288: 34403–34413.

    Article  CAS  PubMed  Google Scholar 

  33. Hames RS, Wattam SL, Yamano H, Bacchieri R, Fry AM . APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J 2011; 20: 7117–7127.

    Article  Google Scholar 

  34. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, Fry AM . The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res 2004; 64: 7370–7376.

    Article  CAS  Google Scholar 

  35. Wang S, Li W, Liu N, Zhang F, Liu H, Liu F et al. Nek2A contributes to tumorigenic growth and possibly functions as potential therapeutic target for human breast cancer. J Cell Biochem 2012; 113: 1904–1914.

    Article  CAS  PubMed  Google Scholar 

  36. Bieche I, Vacher S, Lallemand F, Tozlu-Kara S, Bennani H, Beuzelin M et al. Expression analysis of mitotic spindle checkpoint genes in breast carcinoma: role of NDC80/HEC1 in early breast tumorigenicity, and a two-gene signature for aneuploidy. Mol Cancer 2011; 10: 23.

    Article  PubMed  Google Scholar 

  37. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  Google Scholar 

  38. Hu J, Barbour LJ, Gokel GW . The indole side chain of tryptophan as a versatile pi-donor. J Am Chem Soc 2012; 124: 10940–10941.

    Article  Google Scholar 

  39. Arkin MR, Wells JA . Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004; 3: 301–317.

    Article  CAS  PubMed  Google Scholar 

  40. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10: 1321–1328.

    Article  CAS  Google Scholar 

  41. Shangary S, Wang S . Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009; 49: 223–241.

    Article  CAS  PubMed  Google Scholar 

  42. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  Google Scholar 

  43. Zhu J, Zhou L, Wu G, Konig H, Lin X, Li G et al. A novel small molecule RAD51 inactivator overcomes imatinib-resistance in chronic myeloid leukaemia. EMBO Mol Med 2013; 5: 353–365.

    Article  CAS  PubMed  Google Scholar 

  44. Kokuryo T, Senga T, Yokoyama Y, Nagino M, Nimura Y, Hamaguchi M . Nek2 as an effective target for inhibition of tumorigenic growth and peritoneal dissemination of cholangiocarcinoma. Cancer Res 2007; 67: 9637–9642.

    Article  CAS  PubMed  Google Scholar 

  45. Barbagallo F, Paronetto MP, Franco R, Chieffi P, Dolci S, Fry AM et al. Increased expression and nuclear localization of the centrosomal kinase Nek2 in human testicular seminomas. J Pathol 2009; 217: 431–441.

    Article  CAS  PubMed  Google Scholar 

  46. Andreasson U, Dictor M, Jerkeman M, Berglund M, Sundström C, Linderoth J et al. Identification of molecular targets associated with transformed diffuse large B cell lymphoma using highly purified tumor cells. Am J Hematol 2009; 84: 803–808.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer cell 2013; 23: 48–62.

    Article  CAS  PubMed  Google Scholar 

  48. Cavasotto CN, Orry AJ, Abagyan RA . Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors. Proteins 2003; 51: 423–433.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the initial efforts by Guideng Li, Randy Wei and Yumay Chen on this project. This work was supported by an NIH grant (CA107568) to WHL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-H Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, CM., Zhu, J., Guo, X. et al. Novel small molecules disrupting Hec1/Nek2 interaction ablate tumor progression by triggering Nek2 degradation through a death-trap mechanism. Oncogene 34, 1220–1230 (2015). https://doi.org/10.1038/onc.2014.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.67

This article is cited by

Search

Quick links