Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Rewiring cell polarity signaling in cancer

Abstract

Disrupted cell polarity is a feature of epithelial cancers. The Crumbs, Par and Scribble polarity complexes function to specify and maintain apical and basolateral membrane domains, which are essential to organize intracellular signaling pathways that maintain epithelial homeostasis. Disruption of apical–basal polarity proteins facilitates rewiring of oncogene and tumor suppressor signaling pathways to deregulate proliferation, apoptosis, invasion and metastasis. Moreover, apical–basal polarity integrates intracellular signaling with the microenvironment by regulating metabolic signaling, extracellular matrix remodeling and tissue level organization. In this review, we discuss recent advances in our understanding of how polarity proteins regulate diverse signaling pathways throughout cancer progression from initiation to metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nelson WJ, Dickinson DJ, Weis WI . Roles of cadherins and catenins in cell–cell adhesion and epithelial cell polarity. Progr Mol Biol Transl Sci 2013; 116: 3–23.

    CAS  Google Scholar 

  2. Carthew RW . Adhesion proteins and the control of cell shape. Curr Opin Genet Dev 2005; 15: 358–363.

    CAS  PubMed  Google Scholar 

  3. Martin-Belmonte F, Mostov K . Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 2008; 20: 227–234.

    CAS  PubMed  Google Scholar 

  4. McCaffrey LM, Macara IG . Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol 2011; 21: 727–735.

    CAS  PubMed  Google Scholar 

  5. Nance J, Zallen JA . Elaborating polarity: PAR proteins and the cytoskeleton. Development 2011; 138: 799–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. St Johnston D, Ahringer J . Cell polarity in eggs and epithelia: parallels and diversity. Cell 2010; 141: 757–774.

    CAS  PubMed  Google Scholar 

  7. Tepass U . The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28: 655–685.

    CAS  PubMed  Google Scholar 

  8. Martin-Belmonte F, Perez-Moreno M . Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 2011; 12: 23–38.

    PubMed  Google Scholar 

  9. Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H . LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 2009; 89: 777–798.

    CAS  PubMed  Google Scholar 

  10. Laprise P, Tepass U . Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol 2011; 21: 401–408.

    CAS  PubMed  Google Scholar 

  11. Bostwick DG, Cheng L . Precursors of prostate cancer. Histopathology 2012; 60: 4–27.

    PubMed  Google Scholar 

  12. Siziopikou KP . Ductal carcinoma in situ of the breast. Arch Pathol Lab Med 2013; 137: 462–466.

    CAS  PubMed  Google Scholar 

  13. Pocha SM, Knust E . Complexities of Crumbs function and regulation in tissue morphogenesis. Curr Biol 2013; 23: R289–R293.

    CAS  PubMed  Google Scholar 

  14. Laprise P . Emerging role for epithelial polarity proteins of the Crumbs family as potential tumor suppressors. J Biomed Biotechnol 2011; 2011: 868217.

    PubMed  PubMed Central  Google Scholar 

  15. McCaffrey LM, Macara IG . Signaling pathways in cell polarity. Cold Spring Harbor Perspect Biol 2012; 4: a009654.

    Google Scholar 

  16. Goldstein B, Macara IG . The PAR proteins: fundamental players in animal cell polarization. Dev Cell 2007; 13: 609–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu BMK, Ohno S et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 2001; 20: 3738–3748.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Krahn MP, Klopfenstein DR, Fischer N, Wodarz A . Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol 2010; 20: 636–642.

    CAS  PubMed  Google Scholar 

  19. Durgan J, Kaji N, Jin D, Hall A . Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem 2011; 286: 12461–12474.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morais-de-Sa E, Mirouse V, St Johnston D . aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 2010; 141: 509–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayase J, Kamakura S, Iwakiri Y, Yamaguchi Y, Izaki T, Ito T et al. The WD40 protein Morg1 facilitates Par6-aPKC binding to Crb3 for apical identity in epithelial cells. J Cell Biol 2013; 200: 635–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hurd TW, Gao L, Roh MH, Macara IG, Margolis B . Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 2003; 5: 137–142.

    CAS  PubMed  Google Scholar 

  23. Benton R, St Johnston D . Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 2003; 115: 691–704.

    CAS  PubMed  Google Scholar 

  24. Yang Z, Xue B, Umitsu M, Ikura M, Muthuswamy SK, Neel BG . The signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold. Mol Cell 2012; 47: 469–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hurov J, Piwnica-Worms H . The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle 2007; 6: 1966–1969.

    CAS  PubMed  Google Scholar 

  26. Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 2004; 14: 1425–1435.

    CAS  PubMed  Google Scholar 

  27. Plant PJ, Fawcett JP, Lin DC, Holdorf AD, Binns K, Kulkarni S et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 2003; 5: 301–308.

    Article  CAS  PubMed  Google Scholar 

  28. Smith CA, Lau KM, Rahmani Z, Dho SE, Brothers G, She YM et al. aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J 2007; 26: 468–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoshihama Y, Sasaki K, Horikoshi Y, Suzuki A, Ohtsuka T, Hakuno F et al. KIBRA suppresses apical exocytosis through inhibition of aPKC kinase activity in epithelial cells. Curr Biol 2011; 21: 705–711.

    CAS  PubMed  Google Scholar 

  30. Joberty G, Petersen C, Gao L, Macara IG . The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2000; 2: 531–539.

    CAS  PubMed  Google Scholar 

  31. Humbert PO, Dow LE, Russell SM . The Scribble and Par complexes in polarity and migration: friends or foes? Trends Cell Biol 2006; 16: 622–630.

    CAS  PubMed  Google Scholar 

  32. Qin Y, Capaldo C, Gumbiner BM, Macara IG . The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 2005; 171: 1061–1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Navarro C, Nola S, Audebert S, Santoni MJ, Arsanto JP, Ginestier C et al. Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene 2005; 24: 4330–4339.

    CAS  PubMed  Google Scholar 

  34. Bilder D, Perrimon N . Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 2000; 403: 676–680.

    CAS  PubMed  Google Scholar 

  35. Gustafson WC, Ray S, Jamieson L, Thompson EA, Brasier AR, Fields AP . Bcr-Abl regulates protein kinase Ciota (PKCiota) transcription via an Elk1 site in the PKCiota promoter. J Biol Chem 2004; 279: 9400–9408.

    CAS  PubMed  Google Scholar 

  36. Atwood SX, Li M, Lee A, Tang JY, Oro AE . GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas. Nature 2013; 494: 484–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Russ A, Louderbough JM, Zarnescu D, Schroeder JA . Hugl1 and Hugl2 in mammary epithelial cells: polarity, proliferation, and differentiation. PLoS One 2012; 7: e47734.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kashyap A, Zimmerman T, Ergül N, Bosserhoff A, Hartman U, Alla V et al. The human Lgl polarity gene, Hugl-2, induces MET and suppresses Snail tumorigenesis. Oncogene 2012; 32: 1396–1407.

    PubMed  Google Scholar 

  39. Elsum IA, Humbert PO . Localization, not important in all tumor-suppressing properties: a lesson learnt from scribble. Cells Tissues Organs 2013; 198: 1–11.

    CAS  PubMed  Google Scholar 

  40. Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 2008; 135: 865–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rothenberg SM, Mohapatra G, Rivera MN, Winokur D, Greninger P, Nitta M et al. A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res 2010; 70: 2158–2164.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Linch M, Sanz-Garcia M, Rosse C, Riou P, Peel N, Madsen C et al. Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis 2013; 35: 396–406.

    PubMed  PubMed Central  Google Scholar 

  43. Galvez AS, Duran A, Linares JF, Pathrose P, Castilla EA, Abu-Baker S et al. Protein kinase Czeta represses the interleukin-6 promoter and impairs tumorigenesis in vivo. Mol Cell Biol 2009; 29: 104–115.

    CAS  PubMed  Google Scholar 

  44. Bergstralh DT, St Johnston D . Epithelial cell polarity: what flies can teach us about cancer. Essays Biochem 2012; 53: 129–140.

    CAS  PubMed  Google Scholar 

  45. Elsum I, Yates L, Humbert PO, Richardson HE . The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 2012; 53: 141–168.

    CAS  PubMed  Google Scholar 

  46. Vidal M, Cagan RL . Drosophila models for cancer research. Curr Opin Genet Dev 2006; 16: 10–16.

    CAS  PubMed  Google Scholar 

  47. Fan Y, Bergmann A . Apoptosis-induced compensatory proliferation. The cell is dead. Long live the cell. Trends Cell Biol 2008; 18: 467–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Levayer R, Moreno E . Mechanisms of cell competition: themes and variations. J Cell Biol 2013; 200: 689–698.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pearson HB, Perez-Mancera PA, Dow LE, Ryan A, Tennstedt P, Bogani D et al. SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. J Clin Invest 2011; 121: 4257–4267.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V . Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 2004; 18: 559–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McCaffrey LM, Macara IG . The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 2009; 23: 1450–1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Knoblich JA . Asymmetric cell division: recent developments and their implications for tumour biology. Nat Revi Mol Cell Biol 2010; 11: 849–860.

    CAS  Google Scholar 

  53. Du Q, Macara IG . Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004; 119: 503–516.

    CAS  PubMed  Google Scholar 

  54. Du Q, Stukenberg PT, Macara IG . A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 2001; 3: 1069–1075.

    CAS  PubMed  Google Scholar 

  55. Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh JL, Maitra S et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical pins. Curr Biol 2010; 20: 1809–1818.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jaffe AB, Kaji N, Durgan J, Hall A . Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 2008; 183: 625–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Qin Y, Meisen WH, Hao Y, Macara IG . Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J Cell Biol 2010; 189: 661–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lazaro-Dieguez F, Cohen D, Fernandez D, Hodgson L, van Ijzendoorn SC, Musch A . Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes. J Cell Biol 2013; 203: 251–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bergstralh DT, Lovegrove HE, St Johnston D . Discs large links spindle orientation to apical–basal polarity in Drosophila epithelia. Curr Biol 2013; 23: 1707–1712.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakajima Y, Meyer EJ, Kroesen A, McKinney SA, Gibson MC . Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature 2013; 500: 359–362.

    CAS  PubMed  Google Scholar 

  61. Herrmann JL, Byekova Y, Elmets CA, Athar M . Liver kinase B1 (LKB1) in the pathogenesis of epithelial cancers. Cancer Lett 2011; 306: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S et al. Peutz–Jeghers syndrome: a systematic review and recommendations for management. Gut 2010; 59: 975–986.

    CAS  PubMed  Google Scholar 

  63. Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 2002; 419: 162–167.

    CAS  PubMed  Google Scholar 

  64. McCarthy A, Lord CJ, Savage K, Grigoriadis A, Smith DP, Weigelt B et al. Conditional deletion of the Lkb1 gene in the mouse mammary gland induces tumour formation. J Pathol 2009; 219: 306–316.

    CAS  PubMed  Google Scholar 

  65. Lo B, Strasser G, Sagolla M, Austin CD, Junttila M, Mellman I . Lkb1 regulates organogenesis and early oncogenesis along AMPK-dependent and -independent pathways. J Cell Biol 2012; 199: 1117–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Partanen JI, Tervonen TA, Myllynen M, Lind E, Imai M, Katajisto P et al. Tumor suppressor function of Liver kinase B1 (Lkb1) is linked to regulation of epithelial integrity. Proc Natl Acad Sci 2012; 109: E388–E397.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Andrade-Vieira R, Xu Z, Colp P, Marignani PA . Loss of LKB1 expression reduces the latency of ErbB2-mediated mammary gland tumorigenesis, promoting changes in metabolic pathways. PLoS One 2013; 8: e56567.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Briscoe J, Therond PP . The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14: 416–429.

    PubMed  Google Scholar 

  69. Zhuang Z, Wang K, Cheng X, Qu X, Jiang B, Li Z et al. LKB1 inhibits breast cancer partially through repressing the hedgehog signaling pathway. PLoS One 2013; 8: e67431.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Murray NR, Kalari KR, Fields AP . Protein kinase Ciota expression and oncogenic signaling mechanisms in cancer. J Cell Physiol 2011; 226: 879–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH, Coulombe PA et al. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev 2004; 18: 2724–2729.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Geisbrecht ER, Sawant K, Su Y, Liu ZC, Silver DL, Burtscher A et al. Genetic interaction screens identify a role for hedgehog signaling in Drosophila border cell migration. Dev Dyn 2013; 242: 414–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB . Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 2008; 40: 871–879.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hashizume A, Hieda Y . Hedgehog peptide promotes cell polarization and lumen formation in developing mouse submandibular gland. Biochem Biophys Res Commun 2006; 339: 996–1000.

    CAS  PubMed  Google Scholar 

  75. Kosinski C, Stange DE, Xu C, Chan AS, Ho C, Yuen ST et al. Indian hedgehog regulates intestinal stem cell fate through epithelial–mesenchymal interactions during development. Gastroenterology 2010; 139: 893–903.

    CAS  PubMed  Google Scholar 

  76. Krauss S, Concordet JP, Ingham PW . A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 1993; 75: 1431–1444.

    CAS  PubMed  Google Scholar 

  77. Murray NR, Jamieson L, Yu W, Zhang J, Gokmen-Polar Y, Sier D et al. Protein kinase Ciota is required for Ras transformation and colon carcinogenesis in vivo. J Cell Biol 2004; 164: 797–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP . Atypical protein kinase Ciota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem 2005; 280: 31109–31115.

    CAS  PubMed  Google Scholar 

  79. Wang Y, Hill KS, Fields AP . Protein kinase C maintains a tumor-initiating cell phenotype that is required for ovarian tumorigenesis. Mol Cancer Res 2013; 11: 1624–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Justilien V, Jameison L, Der CJ, Rossman KL, Fields AP . Oncogenic activity of Ect2 is regulated through protein kinase C iota-mediated phosphorylation. J Biol Chem 2011; 286: 8149–8157.

    CAS  PubMed  Google Scholar 

  81. Justilien V, Fields AP . Ect2 links the PKCiota-Par6alpha complex to Rac1 activation and cellular transformation. Oncogene 2009; 28: 3597–3607.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim JY, Valencia T, Abu-Baker S, Linares J, Lee SJ, Yajima T et al. c-Myc phosphorylation by PKCzeta represses prostate tumorigenesis. Proc Natl Acad Sci USA 2013; 110: 6418–6423.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Powell CT, Gschwend JE, Fair WR, Brittis NJ, Stec D, Huryk R . Overexpression of protein kinase C-zeta (PKC-zeta) inhibits invasive and metastatic abilities of Dunning R-3327 MAT-LyLu rat prostate cancer cells. Cancer Res 1996; 56: 4137–4141.

    CAS  PubMed  Google Scholar 

  84. Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger Jennifer F et al. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell 2013; 152: 599–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nagasaka K, Pim D, Massimi P, Thomas M, Tomaic V, Subbaiah VK et al. The cell polarity regulator hScrib controls ERK activation through a KIM site-dependent interaction. Oncogene 2010; 29: 5311–5321.

    CAS  PubMed  Google Scholar 

  86. Anastas JN, Biechele TL, Robitaille M, Muster J, Allison KH, Angers S et al. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression. Oncogene 2012; 31: 3696–3708.

    CAS  PubMed  Google Scholar 

  87. Richier L, Williton K, Clattenburg L, Colwill K, O'Brien M, Tsang C et al. NOS1AP associates with Scribble and regulates dendritic spine development. J Neurosci 2010; 30: 4796–4805.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO . Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. Oncogene 2008; 27: 5988–6001.

    CAS  PubMed  Google Scholar 

  89. Iden S, van Riel Wilhelmina E, Schäfer R, Song J-Y, Hirose T, Ohno S et al. Tumor type-dependent function of the Par3 polarity protein in skin tumorigenesis. Cancer Cell 2012; 22: 389–403.

    CAS  PubMed  Google Scholar 

  90. McCaffrey LM, Montalbano J, Mihai C, Macara IG . Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 2012; 22: 601–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013; 154: 1047–1059.

    CAS  PubMed  Google Scholar 

  92. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  93. Bao Y, Hata Y, Ikeda M, Withanage K . Mammalian Hippo pathway: from development to cancer and beyond. J Biochem 2011; 149: 361–379.

    CAS  PubMed  Google Scholar 

  94. Boggiano JC, Fehon RG . Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev Cell 2012; 22: 695–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin JI, Poon CL, Harvey KF . The Hippo size control pathway—ever expanding. Sci Signal 2013; 6: pe4.

    PubMed  Google Scholar 

  96. Zhao B, Tumaneng K, Guan KL . The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011; 13: 877–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 2011; 144: 782–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 2011; 25: 51–63.

    PubMed  PubMed Central  Google Scholar 

  99. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 2010; 19: 831–844.

    CAS  PubMed  Google Scholar 

  100. Karp CM, Tan TT, Mathew R, Nelson D, Mukherjee C, Degenhardt K et al. Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression. Cancer Res 2008; 68: 4105–4115.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D . Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 2013; 154: 1342–1355.

    CAS  PubMed  Google Scholar 

  102. Moleirinho S, Chang N, Sims AH, Tilston-Lunel AM, Angus L, Steele A et al. KIBRA exhibits MST-independent functional regulation of the Hippo signaling pathway in mammals. Oncogene 2013; 32: 1821–1830.

    CAS  PubMed  Google Scholar 

  103. Xiao L, Chen Y, Ji M, Dong J . KIBRA regulates Hippo signaling activity via interactions with large tumor suppressor kinases. J Biol Chem 2011; 286: 7788–7796.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C et al. The Hippo transducer TAZ Confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147: 759–772.

    CAS  PubMed  Google Scholar 

  105. Hanahan D, Weinberg Robert A . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  106. Dang CV . Links between metabolism and cancer. Genes Dev 2012; 26: 877–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 2007; 447: 1017–1020.

    CAS  PubMed  Google Scholar 

  109. Zhang L, Li J, Young LH, Caplan MJ . AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci USA 2006; 103: 17272–17277.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6: 91–99.

    CAS  PubMed  Google Scholar 

  111. Stefanatos RKA, Vidal M . Tumor invasion and metastasis in Drosophila: a bold past, a bright future. J Genet Genom 2011; 38: 431–438.

    CAS  Google Scholar 

  112. Pagliarini RA, Xu T . A genetic screen in Drosophila for metastatic behavior. Science 2003; 302: 1227–1231.

    CAS  PubMed  Google Scholar 

  113. Ocaña Oscar H, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S et al. Metastatic colonization requires the repression of the epithelial–mesenchymal transition inducer Prrx1. Cancer Cell 2012; 22: 709–724.

    PubMed  Google Scholar 

  114. Tsai Jeff H, Donaher Joana L, Murphy Danielle A, Chau S, Yang J . Spatiotemporal regulation of epithelial–mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22: 725–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial–mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    CAS  PubMed  Google Scholar 

  116. Friedl P, Wolf K . Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2009; 188: 11–19.

    PubMed  Google Scholar 

  117. Nguyen-Ngoc KV, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci USA 2012; 109: E2595–E2604.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ewald AJ, Huebner RJ, Palsdottir H, Lee JK, Perez MJ, Jorgens DM et al. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 2012; 125: 2638–2654.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339: 580–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Elsum IA, Martin C, Humbert PO . Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci 2013; 126: 3990–3999.

    CAS  PubMed  Google Scholar 

  122. Chatterjee S, Seifried L, Feigin ME, Gibbons DL, Scuoppo C, Lin W et al. Dysregulation of cell polarity proteins synergize with oncogenes or the microenvironment to induce invasive behavior in epithelial cells. PLoS One 2012; 7: e34343.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK . Loss of Par3 promotes breast cancer metastasis by compromising cell–cell cohesion. Nat Cell Biol 2012; 15: 189–200.

    PubMed  PubMed Central  Google Scholar 

  124. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL . Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005; 307: 1603–1609.

    CAS  PubMed  Google Scholar 

  125. Viloria-Petit AM, Wrana JL . The TGFbeta-Par6 polarity pathway: linking the Par complex to EMT and breast cancer progression. Cell Cycle 2010; 9: 623–624.

    CAS  PubMed  Google Scholar 

  126. Gunaratne A, Di Guglielmo GM . Par6 is phosphorylated by aPKC to facilitate EMT. Cell Adhes Migr 2013; 7: 357–361.

    Google Scholar 

  127. Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 2006; 8: 1235–1245.

    CAS  PubMed  Google Scholar 

  128. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z . Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 2008; 14: 570–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Brabletz S, Brabletz T . The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 2010; 11: 670–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nagaoka K, Zhang H, Watanabe G, Taya K . Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands. PLoS One 2013; 8: e65127.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bambang IF, Lee YK, Richardson DR, Zhang D . Endoplasmic reticulum protein 29 regulates epithelial cell integrity during the mesenchymal–epithelial transition in breast cancer cells. Oncogene 2013; 32: 1240–1251.

    CAS  PubMed  Google Scholar 

  132. Friedl P, Gilmour D . Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009; 10: 445–457.

    CAS  PubMed  Google Scholar 

  133. Friedl P, Wolf K . Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010; 188: 11–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 2011; 13: 49–58.

    CAS  PubMed  Google Scholar 

  135. Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D et al. A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci UsA 2009; 106: 14028–14033.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. O'Brien LE, Jou TS, Pollack AL, Zhang Q, Hansen SH, Yurchenco P et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 2001; 3: 831–838.

    CAS  PubMed  Google Scholar 

  137. Weaver VM, Howlett AR, Langton-Webster B, Petersen OW, Bissell MJ . The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol 1995; 6: 175–184.

    CAS  PubMed  Google Scholar 

  138. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW . The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 2002; 70: 537–546.

    PubMed  PubMed Central  Google Scholar 

  139. Yu W, Datta A, Leroy P, O'Brien LE, Mak G, Jou TS et al. Beta1-integrin orients epithelial polarity via Rac1 and laminin. Mol Biol Cell 2005; 16: 433–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Akhtar N, Streuli CH . An integrin–ILK–microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 2012; 15: 17–27.

    Google Scholar 

  141. Frederick LA, Matthews JA, Jamieson L, Justilien V, Thompson EA, Radisky DC et al. Matrix metalloproteinase-10 is a critical effector of protein kinase Ciota-Par6alpha-mediated lung cancer. Oncogene 2008; 27: 4841–4853.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Al-Saad S, Al-Shibli K, Donnem T, Persson M, Bremnes RM, Busund LT . The prognostic impact of NF-kappaB p105, vimentin, E-cadherin and Par6 expression in epithelial and stromal compartment in non-small-cell lung cancer. Br J Cancer 2008; 99: 1476–1483.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Solinet S, Akpovi CD, Garcia CJ, Barry A, Vitale ML . Myosin IIB deficiency in embryonic fibroblasts affects regulators and core members of the par polarity complex. Histochem Cell Biol 2011; 136: 245–266.

    CAS  PubMed  Google Scholar 

  144. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302: 1775–1779.

    CAS  PubMed  Google Scholar 

  145. Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T et al. Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr Biol 2009; 19: 1065–1074.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Petit MM, Meulemans SM, Alen P, Ayoubi TA, Jansen E, Van de Ven WJ . The tumor suppressor Scrib interacts with the zyxin-related protein LPP, which shuttles between cell adhesion sites and the nucleus. BMC Cell Biol 2005; 6: 1.

    PubMed  PubMed Central  Google Scholar 

  147. Allen WE, Zicha D, Ridley AJ, Jones GE . A role for Cdc42 in macrophage chemotaxis. J Cell Biol 1998; 141: 1147–1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu Q, Ning W, Dantzer R, Freund GG, Kelley KW . Activation of protein kinase C-zeta and phosphatidylinositol 3′-kinase and promotion of macrophage differentiation by insulin-like growth factor-I. J Immunol 1998; 160: 1393–1401.

    CAS  PubMed  Google Scholar 

  149. Tamehiro N, Mujawar Z, Zhou S, Zhuang DZ, Hornemann T, von Eckardstein A et al. Cell polarity factor Par3 binds SPTLC1 and modulates monocyte serine palmitoyltransferase activity and chemotaxis. J Biol Chem 2009; 284: 24881–24890.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Soltanian S, Matin MM . Cancer stem cells and cancer therapy. Tumour Biol 2011; 32: 425–440.

    PubMed  Google Scholar 

  151. Visvader JE, Lindeman GJ . Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717–728.

    CAS  PubMed  Google Scholar 

  152. Zen K, Yasui K, Gen Y, Dohi O, Wakabayashi N, Mitsufuji S et al. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 2009; 28: 2910–2918.

    CAS  PubMed  Google Scholar 

  153. Dugay F, Goff XL, Rioux-Leclerq N, Chesnel F, Jouan F, Henry C et al. Overexpression of the polarity protein PAR-3 in clear cell renal cell carcinoma is associated with poor prognosis. Int J Cancer 2013; 134: 251–260.

    Google Scholar 

  154. Cunliffe HE, Jiang Y, Fornace KM, Yang F, Meltzer PS . PAR6B is required for tight junction formation and activated PKCzeta localization in breast cancer. Am J Cancer Res 2012; 2: 478–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Nolan ME, Aranda V, Lee S, Lakshmi B, Basu S, Allred DC et al. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res 2008; 68: 8201–8209.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Tsai JH, Hsieh YS, Kuo SJ, Chen ST, Yu SY, Huang CY et al. Alteration in the expression of protein kinase C isoforms in human hepatocellular carcinoma. Cancer Lett 2000; 161: 171–175.

    CAS  PubMed  Google Scholar 

  157. Langzam L, Koren R, Gal R, Kugel V, Paz A, Farkas A et al. Patterns of protein kinase C isoenzyme expression in transitional cell carcinoma of bladder. Relation to degree of malignancy. Am J Clin Pathol 2001; 116: 377–385.

    CAS  PubMed  Google Scholar 

  158. Cohen EE, Lingen MW, Zhu B, Zhu H, Straza MW, Pierce C et al. Protein kinase C zeta mediates epidermal growth factor-induced growth of head and neck tumor cells by regulating mitogen-activated protein kinase. Cancer Res 2006; 66: 6296–6303.

    CAS  PubMed  Google Scholar 

  159. Evans JD, Cornford PA, Dodson A, Neoptolemos JP, Foster CS . Expression patterns of protein kinase C isoenzymes are characteristically modulated in chronic pancreatitis and pancreatic cancer. Am J Clin Pathol 2003; 119: 392–402.

    CAS  PubMed  Google Scholar 

  160. Yao S, Bee A, Brewer D, Dodson A, Beesley C, Ke Y et al. PRKC-zeta expression promotes the aggressive phenotype of human prostate cancer cells and is a novel target for therapeutic intervention. Genes Cancer 2010; 1: 444–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yao S, Ireland SJ, Bee A, Beesley C, Forootan SS, Dodson A et al. Splice variant PRKC-zeta(-PrC) is a novel biomarker of human prostate cancer. Br J Cancer 2012; 107: 388–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Namdarian B, Wong E, Galea R, Pedersen J, Chin X, Speirs R et al. Loss of APKC expression independently predicts tumor recurrence in superficial bladder cancers. Urol Oncol 2013; 31: 649–655.

    PubMed  Google Scholar 

  163. Grifoni D, Garoia F, Bellosta P, Parisi F, De Biase D, Collina G et al. aPKCzeta cortical loading is associated with Lgl cytoplasmic release and tumor growth in Drosophila and human epithelia. Oncogene 2007; 26: 5960–5965.

    CAS  PubMed  Google Scholar 

  164. Du GS, Wang JM, Lu JX, Li Q, Ma CQ, Du JT et al. Expression of P-aPKC-iota, E-cadherin, and beta-catenin related to invasion and metastasis in hepatocellular carcinoma. Ann Surg Oncol 2009; 16: 1578–1586.

    PubMed  Google Scholar 

  165. Regala RP, Weems C, Jamieson L, Khoor A, Edell ES, Lohse CM et al. Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer research, 2005; 65: 8905–8911.

    CAS  PubMed  Google Scholar 

  166. Kato S, Akimoto K, Nagashima Y, Ishiguro H, Kubota K, Kobayashi N et al. aPKClambda/iota is a beneficial prognostic marker for pancreatic neoplasms. Pancreatology 2013; 13: 360–368.

    CAS  PubMed  Google Scholar 

  167. Eder AM, Sui X, Rosen DG, Nolden LK, Cheng KW, Lahad JP et al. Atypical PKCiota contributes to poor prognosis through loss of apical–basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 12519–12524.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang YL, Chu JY, Luo ML, Wu YP, Zhang Y, Feng YB et al. Amplification of PRKCI, located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma. Genes Chromosomes Cancer 2008; 47: 127–136.

    CAS  PubMed  Google Scholar 

  169. Kohjima M, Noda Y, Takeya R, Saito N, Takeuchi K, Sumimoto H . PAR3beta, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions. Biochem Biophys Res Commun 2002; 299: 641–646.

    CAS  PubMed  Google Scholar 

  170. Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L . Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 2006; 119: 1285–1290.

    CAS  PubMed  Google Scholar 

  171. Nakagawa S, Yano T, Nakagawa K, Takizawa S, Suzuki Y, Yasugi T et al. Analysis of the expression and localisation of a LAP protein, human scribble, in the normal and neoplastic epithelium of uterine cervix. Br J Cancer 2004; 90: 194–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ouyang Z, Zhan W, Dan L . hScrib, a human homolog of Drosophila neoplastic tumor suppressor, is involved in the progress of endometrial cancer. Oncol Res 2010; 18: 593–599.

    PubMed  Google Scholar 

  173. Gardiol D, Kuhne C, Glaunsinger B, Lee SS, Javier R, Banks L . Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 1999; 18: 5487–5496.

    CAS  PubMed  Google Scholar 

  174. Lin HT, Steller MA, Aish L, Hanada T, Chishti AH . Differential expression of human Dlg in cervical intraepithelial neoplasias. Gynecol Oncol 2004; 93: 422–428.

    CAS  PubMed  Google Scholar 

  175. Watson RA, Rollason TP, Reynolds GM, Murray PG, Banks L, Roberts S . Changes in expression of the human homologue of the Drosophila discs large tumour suppressor protein in high-grade premalignant cervical neoplasias. Carcinogenesis 2002; 23: 1791–1796.

    CAS  PubMed  Google Scholar 

  176. Cavatorta AL, Fumero G, Chouhy D, Aguirre R, Nocito AL, Giri AA et al. Differential expression of the human homologue of drosophila discs large oncosuppressor in histologic samples from human papillomavirus-associated lesions as a marker for progression to malignancy. Int J Cancer 2004; 111: 373–380.

    CAS  PubMed  Google Scholar 

  177. Zubakov D, Stupar Z, Kovacs G . Differential expression of a new isoform of DLG2 in renal oncocytoma. BMC Cancer 2006; 6: 106.

    PubMed  PubMed Central  Google Scholar 

  178. Feng X, Chen K, Ye S, Wang H, Wei G, Tan W et al. MPP3 inactivation by promoter CpG islands hypermethylation in colorectal carcinogenesis. Cancer Biomarkers 2012; 11: 99–106.

    CAS  PubMed  Google Scholar 

  179. Grifoni D, Garoia F, Schimanski CC, Schmitz G, Laurenti E, Galle PR et al. The human protein Hugl-1 substitutes for Drosophila lethal giant larvae tumour suppressor function in vivo. Oncogene 2004; 23: 8688–8694.

    CAS  PubMed  Google Scholar 

  180. Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schafer SC et al. Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 2005; 24: 3100–3109.

    CAS  PubMed  Google Scholar 

  181. Kuphal S, Wallner S, Schimanski CC, Bataille F, Hofer P, Strand S et al. Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 2006; 25: 103–110.

    CAS  PubMed  Google Scholar 

  182. Lu X, Feng X, Man X, Yang G, Tang L, Du D et al. Aberrant splicing of Hugl-1 is associated with hepatocellular carcinoma progression. Clin Cancer Res 2009; 15: 3287–3296.

    CAS  PubMed  Google Scholar 

  183. Lisovsky M, Dresser K, Baker S, Fisher A, Woda B, Banner B et al. Cell polarity protein Lgl2 is lost or aberrantly localized in gastric dysplasia and adenocarcinoma: an immunohistochemical study. Mod Pathol 2009; 22: 977–984.

    CAS  PubMed  Google Scholar 

  184. Lisovsky M, Ogawa F, Dresser K, Woda B, Lauwers GY . Loss of cell polarity protein Lgl2 in foveolar-type gastric dysplasia: correlation with expression of the apical marker aPKC-zeta. Virchows Archiv 2010; 457: 635–642.

    CAS  PubMed  Google Scholar 

  185. Tsuruga T, Nakagawa S, Watanabe M, Takizawa S, Matsumoto Y, Nagasaka K et al. Loss of Hugl-1 expression associates with lymph node metastasis in endometrial cancer. Oncol Res 2007; 16: 431–435.

    CAS  PubMed  Google Scholar 

  186. Storrs CH, Silverstein SJ . PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol 2007; 81: 4080–4090.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Korsse SE, Biermann K, Offerhaus GJ, Wagner A, Dekker E, Mathus-Vliegen EM et al. Identification of molecular alterations in gastrointestinal carcinomas and dysplastic hamartomas in Peutz–Jeghers syndrome. Carcinogenesis 2013; 34: 1611–1619.

    CAS  PubMed  Google Scholar 

  188. Park WS, Moon YW, Yang YM, Kim YS, Kim YD, Fuller BG et al. Mutations of the STK11 gene in sporadic gastric carcinoma. Int J Oncol 1998; 13: 601–604.

    CAS  PubMed  Google Scholar 

  189. Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE et al. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res 1998; 58: 2087–2090.

    CAS  PubMed  Google Scholar 

  190. Dong SM, Kim KM, Kim SY, Shin MS, Na EY, Lee SH et al. Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res 1998; 58: 3787–3790.

    CAS  PubMed  Google Scholar 

  191. Liu K, Luo Y, Tian H, Yu KZ, He JX, Shen WY . The tumor suppressor LKB1 antagonizes WNT signaling pathway through modulating GSK3beta activity in cell growth of esophageal carcinoma. Tumour Biol 2013; 35: 995–1102.

    Google Scholar 

  192. Ekizoglu S, Dalay N, Karaman E, Akdeniz D, Ozaydin A, Buyru N . LKB1 downregulation may be independent of promoter methylation or FOXO3 expression in head and neck cancer. Transl Res 2013; 162: 122–129.

    CAS  PubMed  Google Scholar 

  193. Huang Y, Chen ZK, Huang KT, Li P, He B, Guo X et al. Decreased expression of LKB1 correlates with poor prognosis in hepatocellular carcinoma patients undergoing hepatectomy. Asian Pac J Cancer Prev 2013; 14: 1985–1988.

    PubMed  Google Scholar 

  194. Korsse SE, Harinck F, van Lier MG, Biermann K, Offerhaus GJ, Krak N et al. Pancreatic cancer risk in Peutz–Jeghers syndrome patients: a large cohort study and implications for surveillance. J Med Genet 2013; 50: 59–64.

    CAS  PubMed  Google Scholar 

  195. Sato N, Rosty C, Jansen M, Fukushima N, Ueki T, Yeo CJ et al. STK11/LKB1 Peutz–Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 2001; 159: 2017–2022.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Su GH, Hruban RH, Bansal RK, Bova GS, Tang DJ, Shekher MC et al. Germline and somatic mutations of the STK11/LKB1 Peutz–Jeghers gene in pancreatic and biliary cancers. Am J Pathol 1999; 154: 1835–1840.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G et al. Underexpression of tumour suppressor LKB1 in clear cell renal cell carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer 2013; 108: 327–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Gonzalez-Sanchez E, Martin-Caballero J, Flores JM, Hernandez-Losa J, Cortes J, Mares R et al. Lkb1 loss promotes tumor progression of BRAF(V600E)-induced lung adenomas. PLoS One 2013; 8: e66933.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448: 807–810.

    CAS  PubMed  Google Scholar 

  200. Koivunen JP, Kim J, Lee J, Rogers AM, Park JO, Zhao X et al. Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br J Cancer 2008; 99: 245–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res, 2002; 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  202. Tanwar PS, Mohapatra G, Chiang S, Engler DA, Zhang L, Kaneko-Tarui T et al. Loss of LKB1 and PTEN tumor suppressor genes in the ovarian surface epithelium induces papillary serous ovarian cancer. Carcinogenesis 2013; 35: 546–553.

    PubMed  PubMed Central  Google Scholar 

  203. Wang ZJ, Churchman M, Campbell IG, Xu WH, Yan ZY, McCluggage WG et al. Allele loss and mutation screen at the Peutz–Jeghers (LKB1) locus (19p13.3) in sporadic ovarian tumours. Br J Cancer 1999; 80: 70–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkkanen M, Salovaara R et al. LKB1 somatic mutations in sporadic tumors. Am J Pathol 1999; 154: 677–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Mack HI, Munger K . The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines. Virology 2013; 446: 9–16.

    CAS  PubMed  Google Scholar 

  206. Forster LF, Defres S, Goudie DR, Baty DU, Carey FA . An investigation of the Peutz–Jeghers gene (LKB1) in sporadic breast and colon cancers. J Clin Pathol 2000; 53: 791–793.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Sobottka SB, Haase M, Fitze G, Hahn M, Schackert HK, Schackert G . Frequent loss of heterozygosity at the 19p13.3 locus without LKB1/STK11 mutations in human carcinoma metastases to the brain. J Neurooncol 2000; 49: 187–195.

    CAS  PubMed  Google Scholar 

  208. Sohn J, Do KA, Liu S, Chen H, Mills GB, Hortobagyi GN et al. Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy. Ann Oncol 2013; 24: 2522–2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W et al. Somatic mutations in the Peutz–Jeghers (LKB1/STKII) gene in sporadic malignant melanomas. J Invest Dermatol 1999; 112: 509–511.

    CAS  PubMed  Google Scholar 

  210. Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J . Somatic mutation of the Peutz–Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene 1999; 18: 1777–1780.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research by LM is supported by grants from the Terry Fox Research Institute (1009) and Canadian Institutes of Health Research (MOP-119482). LM is an FRQS Research Scholar. RH is supported by the McGill Integrated Cancer Research Training Program and a Canderel Studentship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L McCaffrey.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halaoui, R., McCaffrey, L. Rewiring cell polarity signaling in cancer. Oncogene 34, 939–950 (2015). https://doi.org/10.1038/onc.2014.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.59

This article is cited by

Search

Quick links