Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The polarity protein PARD3 and cancer

Abstract

Tissue disorganisation is one of the main hallmarks of cancer. Polarity proteins are responsible for the arrangement of cells within epithelial tissues through the asymmetric organisation of cellular components. Partition defective 3 (PARD3) is a master regulator of the Par polarity complex primarily due to its ability to form large complexes via its self-homologous binding domain. In addition to its role in polarity, PARD3 is a scaffolding protein that binds to intracellular signalling molecules, many of which are frequently deregulated in cancer. The role of PARD3 has been implicated in multiple solid cancers as either a tumour suppressor or promoter. This dual functionality is both physiologically and cell context dependent. In this review, we will discuss PARD3’s role in tumourigenesis in both laboratory and clinical settings. We will also review several of the mechanisms underpinning PARD3’s function including its association with intracellular signalling pathways and its role in the regulation of asymmetric cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of mammalian PARD3 isoforms.
Fig. 2: Schematic representation of PARD3 binding partners.
Fig. 3: Schematic representation of the role of PARD3 in different intracellular signalling pathways.

Similar content being viewed by others

References

  1. Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D. Polarity complex proteins. Biochim Biophys Acta 2008;1778:614–30.

    Article  CAS  PubMed  Google Scholar 

  2. Dow LE, Humbert PO. Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. Int Rev Cytol. 2007;262:253–302.

    Article  CAS  PubMed  Google Scholar 

  3. Etienne-Manneville S. Polarity proteins in migration and invasion. Oncogene 2008;27:6970–80.

    Article  CAS  PubMed  Google Scholar 

  4. Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018;75:2735–61.

    Article  CAS  PubMed  Google Scholar 

  5. Djiane A, Yogev S, Mlodzik M. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 2005;121:621–31.

    Article  CAS  PubMed  Google Scholar 

  6. Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003;423:173–7.

    Article  CAS  PubMed  Google Scholar 

  7. Montcouquiol M, Sans N, Huss D, Kach J, Dickman JD, Forge A, et al. Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. J Neurosci. 2006;26:5265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers 2018;10:52.

    Article  PubMed Central  Google Scholar 

  9. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  10. Ahmed SM, Macara IG. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nature Commun 2017;8:14867.

    Article  CAS  Google Scholar 

  11. Mescher M, Jeong P, Knapp SK, Rubsam M, Saynisch M, Kranen M, et al. The epid Single-molecule trackermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med 2017;214:339–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Archibald A, Mihai C, Macara IG, McCaffrey L. Oncogenic suppression of apoptosis uncovers a Rac1/JNK prolifer Single-molecule trackation pathway activated by loss of Par3. Oncogene 2015;34:3199–206.

    Article  CAS  PubMed  Google Scholar 

  13. McCaffrey LM, Macara IG. The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 2009;23:1450–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou PJ, Wang X, An N, Wei L, Zhang L, Huang X, et al. Loss of Par3 promotes prostatic tumorigenesis by enhancing cell growth and changing cell division modes. Oncogene. 2019;38:2192–205.

    Article  CAS  PubMed  Google Scholar 

  15. Hawkins ED, Russell SM. Upsides and downsides to polarity and asymmetric cell division in leukemia. Oncogene 2008;27:7003–17.

    Article  CAS  PubMed  Google Scholar 

  16. Kemphues KJ, Priess JR, Morton DG, Cheng NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 1988;52:311–20.

    Article  CAS  PubMed  Google Scholar 

  17. Kirby C, Kusch M, Kemphues K. Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol 1990;142:203–15.

    Article  CAS  PubMed  Google Scholar 

  18. Schober M, Schaefer M, Knoblich JA. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 1999;402:548–51.

    Article  CAS  PubMed  Google Scholar 

  19. Wieschaus E, Noell E. Specificity of embryonic lethal mutations in Drosophila analyzed in germ line clones. Roux Arch. Dev Biol. 1986;195:63–73.

    Google Scholar 

  20. Muller HA, Wieschaus E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J Cell Biol 1996;134:149–63.

    Article  CAS  PubMed  Google Scholar 

  21. Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009;23:2675–99.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T, et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998;143:95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 2001;152:1183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horikoshi Y, Suzuki A, Yamanaka T, Sasaki K, Mizuno K, Sawada H, et al. Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J Cell Sci 2009;122:1595–606.

    Article  CAS  PubMed  Google Scholar 

  25. Hong E, Jayachandran P, Brewster R. The polarity protein Pard3 is required for centrosome positioning during neurulation. Dev Biol 2010;341:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ludford-Menting MJ, Oliaro J, Sacirbegovic F, Cheah ET, Pedersen N, Thomas SJ, et al. A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 2005;22:737–48.

    Article  CAS  PubMed  Google Scholar 

  27. Oliaro J, Van Ham V, Sacirbegovic F, Pasam A, Bomzon Z, Pham K, et al. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms. J Immunol 2010;185:367–75.

    Article  CAS  PubMed  Google Scholar 

  28. Kohjima M, Noda Y, Takeya R, Saito N, Takeuchi K, Sumimoto H. PAR3beta, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions. Biochem Biophys Res Commun 2002;299:641–6.

    Article  CAS  PubMed  Google Scholar 

  29. Gao L, Macara IG, Joberty G. Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties. Gene 2002;294:99–107.

    Article  CAS  PubMed  Google Scholar 

  30. Huo Y, Macara IG. The Par3-like polarity protein Par3L is essential for mammary stem cell maintenance. Nat Cell Biol 2014;16:529–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li T, Liu X, Jiang Q, Lei X, Liu D. High expression of partitioning defective 3-like protein is associated with malignancy in colorectal cancer. Tumour Biol 2017;39:1010428317698393.

    PubMed  Google Scholar 

  32. Li T, Liu D, Lei X, Jiang Q. Par3L enhances colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway. Biochem Biophys Res Commun 2017;482:1037–41.

    Article  CAS  PubMed  Google Scholar 

  33. Catterall R, Lelarge V, McCaffrey L. Genetic alterations of epithelial polarity genes are associated with loss of polarity in invasive breast cancer. Int J Cancer 2020;146:1578–91.

    Article  CAS  PubMed  Google Scholar 

  34. Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development. 2017;144:3405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wen W, Zhang M. Protein complex assemblies in epithelial cell polarity and asymmetric cell division. J Mol Biol 2018;430:3504–20.

    Article  CAS  PubMed  Google Scholar 

  36. Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. Febs J. 2021 Jan 14.

  37. Kono K, Yoshiura S, Fujita I, Okada Y, Shitamukai A, Shibata T, et al. Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization. Elife. 2019;8:e45559.

  38. Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176:419–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Z, Yang Y, Gu A, Xu J, Mao Y, Lu H, et al. Par complex cluster formation mediated by phase separation. Nat Commun. 2020;11:2266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holly RW, Jones K, Prehoda KE. A conserved PDZ-binding motif in aPKC interacts with Par-3 and mediates cortical polarity. Curr Biol. 2020;30:893–8.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mangeol P, Massey-Harroche D, Richard F, Lenne P-F, Le Bivic A. Super-resolution imaging uncovers the nanoscopic segregation of polarity proteins in epithelia. bioRxiv. 2020. https://doi.org/10.1101/2020.08.12.248674.

  42. Tan B, Yatim S, Peng S, Gunaratne J, Hunziker W, Ludwig A. The mammalian crumbs complex defines a distinct polarity domain apical of epithelial tight junctions. Curr Biol. 2020;30:2791–804.e6.

    Article  CAS  PubMed  Google Scholar 

  43. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol. 2000;2:540–7.

    Article  CAS  PubMed  Google Scholar 

  44. Dziengelewski C, Rodrigue MA, Caillier A, Jacquet K, Boulanger MC, Bergeman J. et al. Adenoviral protein E4orf4 interacts with the polarity protein Par3 to induce nuclear rupture and tumor cell death. J Cell Biol. 2020;219:e201805122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizuno K, Suzuki A, Hirose T, Kitamura K, Kutsuzawa K, Futaki M, et al. Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J Biol Chem. 2003;278:31240–50.

    Article  CAS  PubMed  Google Scholar 

  46. Benton R, St Johnston D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell. 2003;115:691–704.

    Article  CAS  PubMed  Google Scholar 

  47. Feng W, Wu H, Chan LN, Zhang M. Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem. 2008;283:23440–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Wang W, Chen J, Zhang K, Gao F, Gao B, et al. Structural insights into the intrinsic self-assembly of Par-3 N-terminal domain. Structure. 2013;21:997–1006.

    Article  CAS  PubMed  Google Scholar 

  49. Romero G, von Zastrow M, Friedman PA. Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. Adv Pharmacol. 2011;62:279–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Itoh N, Nakayama M, Nishimura T, Fujisue S, Nishioka T, Watanabe T, et al. Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3-kinase) as Par3 partners by proteomic analysis. Cytoskeleton. 2010;67:297–308.

    CAS  PubMed  Google Scholar 

  51. Zhou Y, Fang L, Du D, Zhou W, Feng X, Chen J, et al. Proteome identification of binding-partners interacting with cell polarity protein Par3 in Jurkat cells. Acta Biochim Biophys Sin. 2008;40:729–39.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang P, Wang S, Wang S, Qiao J, Zhang L, Zhang Z, et al. Dual function of partitioning-defective 3 in the regulation of YAP phosphorylation and activation. Cell Discov 2016;2:16021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lv XB, Liu CY, Wang Z, Sun YP, Xiong Y, Lei QY, et al. PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep. 2015;16:975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou P-J, Xue W, Peng J, Wang Y, Wei L, Yang Z, et al. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J Exp Clin Cancer Res. 2017;36:139.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu H, Feng W, Chen J, Chan LN, Huang S, Zhang M. PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell. 2007;28:886–98.

    Article  CAS  PubMed  Google Scholar 

  56. Krahn MP, Klopfenstein DR, Fischer N, Wodarz A. Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol. 2010;20:636–42.

    Article  CAS  PubMed  Google Scholar 

  57. Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S, et al. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol. 2005;7:270–7.

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol. 2005;7:262–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kim MK, Jang JW, Bae SC. DNA binding partners of YAP/TAZ. BMB Rep. 2018;51:126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jha HC, Sun Z, Upadhyay SK, El-Naccache DW, Singh RK, Sahu SK, et al. KSHV-mediated regulation of Par3 and SNAIL contributes to B-cell proliferation. PLoS Pathog. 2016;12:e1005801.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta AL, et al. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol. 2014;8:533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fang L, Wang Y, Du D, Yang G, Tak Kwok T, Kai, et al. Cell polarity protein Par3 complexes with DNA-PK via Ku70 and regulates DNA double-strand break repair. Cell Res. 2007;17:100–16.

    Article  CAS  PubMed  Google Scholar 

  63. Nakamura H, Nagasaka K, Kawana K, Taguchi A, Uehara Y, Yoshida M, et al. Expression of Par3 polarity protein correlates with poor prognosis in ovarian cancer. BMC Cancer. 2016;16:897.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang Z, Sandiford S, Wu C, Li SS. Numb regulates cell-cell adhesion and polarity in response to tyrosine kinase signalling. Embo J. 2009;28:2360–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harris TJ, Peifer M. The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J Cell Biol 2005;170:813–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nam SC, Choi KW. Interaction of Par-6 and Crumbs complexes is essential for photoreceptor morphogenesis in Drosophila. Development. 2003;130:4363–72.

    Article  CAS  PubMed  Google Scholar 

  67. Morais-de-Sá E, Mirouse V, St Johnston D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell. 2010;141:509–23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T, et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr Biol. 2003;13:734–43.

    Article  CAS  PubMed  Google Scholar 

  69. Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell. 2007;128:383–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carracedo A, Pandolfi PP. The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene. 2008;27:5527–41.

    Article  CAS  PubMed  Google Scholar 

  71. Horikoshi Y, Hamada S, Ohno S, Suetsugu S. Phosphoinositide binding by par-3 involved in par-3 localization. Cell Struct Funct. 2011;36:97–102.

    Article  CAS  PubMed  Google Scholar 

  72. Simões Sde M, Blankenship JT, Weitz O, Farrell DL, Tamada M, Fernandez-Gonzalez R, et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell. 2010;19:377–88.

    Article  PubMed  Google Scholar 

  73. Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol. 2002;4:513–8.

    Article  CAS  PubMed  Google Scholar 

  74. Vanhaesebroeck B, Jones GE, Allen WE, Zicha D, Hooshmand-Rad R, Sawyer C, et al. Distinct PI(3)Ks mediate mitogenic signalling and cell migration in macrophages. Nat Cell Biol. 1999;1:69–71.

    Article  CAS  PubMed  Google Scholar 

  75. Funamoto S, Meili R, Lee S, Parry L, Firtel RA. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell. 2002;109:611–23.

    Article  CAS  PubMed  Google Scholar 

  76. De P, Aske JC, Dey N. RAC1 takes the lead in solid tumors. Cells. 2019;8:5.

    Article  Google Scholar 

  77. Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, Berns A, et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell. 1994;77:537–49.

    Article  CAS  PubMed  Google Scholar 

  78. Das S, Yin T, Yang Q, Zhang J, Wu YI, Yu J. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling. Proc Natl Acad Sci USA. 2015;112:E267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Worthylake DK, Rossman KL, Sondek J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature. 2000;408:682–8.

    Article  CAS  PubMed  Google Scholar 

  80. Matsuzawa K, Akita H, Watanabe T, Kakeno M, Matsui T, Wang S, et al. PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions. Mol Biol Cell. 2016;27:1511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Terawaki S, Kitano K, Mori T, Zhai Y, Higuchi Y, Itoh N, et al. The PHCCEx domain of Tiam1/2 is a novel protein- and membrane-binding module. Embo J. 2010;29:236–50.

    Article  CAS  PubMed  Google Scholar 

  82. Song T, Tian X, Kai F, Ke J, Wei Z, Jing-Song L, et al. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein. Oncotarget. 2016;7:64260–73.

    Article  PubMed  Google Scholar 

  83. Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK. Loss of Par3 promotes breast cancer metastasis by compromising cell-cell cohesion. Nat Cell Biol. 2013;15:189–200.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang H, Macara IG. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol. 2006;8:227–37.

    Article  CAS  PubMed  Google Scholar 

  85. Mishima M, Kaitna S, Glotzer M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell. 2002;2:41–54.

    Article  CAS  PubMed  Google Scholar 

  86. Diamantopoulou Z, White G, Fadlullah MZH, Dreger M, Pickering K, Maltas J, et al. TIAM1 antagonizes TAZ/YAP both in the destruction complex in the cytoplasm and in the nucleus to inhibit invasion of intestinal epithelial cells. Cancer Cell. 2017;31:621–34.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gont A, Hanson JE, Lavictoire SJ, Daneshmand M, Nicholas G, Woulfe J, et al. Inhibition of glioblastoma malignancy by Lgl1. Oncotarget. 2014;5:11541–51.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ravid S. The tumor suppressor Lgl1 regulates front-rear polarity of migrating cells. Cell Adh Migr. 2014;8:378–83.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fang CM, Xu YH. Down-regulated expression of atypical PKC-binding domain deleted asip isoforms in human hepatocellular carcinomas. Cell Res. 2001;11:223–9.

    Article  CAS  PubMed  Google Scholar 

  90. McCaffrey LM, Montalbano J, Mihai C, Macara IG. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell. 2012;22:601–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, et al. Downregulation of PKCzeta/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal. 2017;38:49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Iden S, van Riel WE, Schafer R, Song JY, Hirose T, Ohno S, et al. Tumor type-dependent function of the par3 polarity protein in skin tumorigenesis. Cancer Cell. 2012;22:389–403.

    Article  CAS  PubMed  Google Scholar 

  93. Vorhagen S, Kleefisch D, Persa O-D, Graband A, Schwickert A, Saynisch M, et al. Shared and independent functions of aPKCλ and Par3 in skin tumorigenesis. Oncogene. 2018;37:5136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Slater M, Barden JA. Differentiating keratoacanthoma from squamous cell carcinoma by the use of apoptotic and cell adhesion markers. Histopathology. 2005;47:170–8.

    Article  CAS  PubMed  Google Scholar 

  95. Heddle JA, Athanasiou K. Mutation rate, genome size and their relation to the rec concept. Nature. 1975;258:359–61.

    Article  CAS  PubMed  Google Scholar 

  96. Nishant KT, Singh ND, Alani E. Genomic mutation rates: what high-throughput methods can tell us. Bioessays. 2009;31:912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Piraino SW, Thomas V, O’Donovan P, Furney SJ Mutations: Driver Versus Passenger. In: Boffetta P, Hainaut P, editors. Encyclopedia of Cancer (Third Edition). Oxford: Academic Press; 2019. 551–62.

  98. Holliday R, Grigg GW. DNA methylation and mutation. Mutat Res/Fundamental Mol Mechanisms Mutagenesis 1993;285:61–7.

    Article  CAS  Google Scholar 

  99. Supek F, Lehner B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature. 2015;521:81–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zen K, Yasui K, Gen Y, Dohi O, Wakabayashi N, Mitsufuji S, et al. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 2009;28:2910–8.

    Article  CAS  PubMed  Google Scholar 

  101. Rothenberg SM, Mohapatra G, Rivera MN, Winokur D, Greninger P, Nitta M, et al. A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res 2010;70:2158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bonastre E, Verdura S, Zondervan I, Facchinetti F, Lantuejoul S, Chiara MD, et al. PARD3 inactivation in lung squamous cell carcinomas impairs STAT3 and promotes malignant invasion. Cancer Res. 2015;75:1287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zitzelsberger H, Hieber L, Richter H, Unger K, Briscoe CV, Peddie C, et al. Gene amplification of atypical PKC-binding PARD3 in radiation-transformed neoplastic retinal pigment epithelial cell lines. Genes Chromosomes Cancer 2004;40:55–9.

    Article  CAS  PubMed  Google Scholar 

  104. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Williams E, Villar-Prados A, Bowser J, Broaddus R, Gladden AB. Loss of polarity alters proliferation and differentiation in low-grade endometrial cancers by disrupting Notch signaling. PLoS One. 2017;12:e0189081.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Guo X, Wang M, Zhao Y, Wang X, Shen M, Zhu F, et al. Par3 regulates invasion of pancreatic cancer cells via interaction with Tiam1. Clin Exp Med 2016;16:357–65.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, et al. MicroRNA 483-3p targets Pard3 to potentiate TGF-beta1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 2019;38:699–715.

    Article  PubMed  Google Scholar 

  108. Li J, Xu H, Wang Q, Fu P, Huang T, Anas O, et al. Pard3 suppresses glioma invasion by regulating RhoA through atypical protein kinase C/NF-kappaB signaling. Cancer Med 2019;8:2288–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 2010;11:849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bowerman B, Draper BW, Mello CC, Priess JR. The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 1993;74:443–52.

    Article  CAS  PubMed  Google Scholar 

  111. Kelsom C, Lu W. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis. Cell Biosci 2012;2:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Loeffler D, Wehling A, Schneiter F, Zhang Y, Müller-Bötticher N, Hoppe PS, et al. Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature. 2019;573:426–9.

    Article  CAS  PubMed  Google Scholar 

  113. Cowan CR, Hyman AA. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu Rev Cell Dev Biol. 2004;20:427–53.

    Article  CAS  PubMed  Google Scholar 

  114. Ali NJA, Dias Gomes M, Bauer R, Brodesser S, Niemann C, Iden S. Essential role of polarity protein Par3 for epidermal homeostasis through regulation of barrier function, keratinocyte differentiation, and stem cell maintenance. J Investig Dermatol. 2016;136:2406–16.

    Article  CAS  PubMed  Google Scholar 

  115. Grill SW, Gönczy P, Stelzer EH, Hyman AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001;409:630–3.

    Article  CAS  PubMed  Google Scholar 

  116. Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh JL, Maitra S, et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol 2010;20:1809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ling J, Sckaff M, Tiwari M, Chen Y, Li J, Jones J. et al. RAS-mediated suppression of PAR3 and its effects on SCC initiation and tissue architecture occur independently of hyperplasia. J Cell Sci. 2020;133:jcs249102.

    Article  CAS  PubMed  Google Scholar 

  118. Etemad-Moghadam B, Guo S, Kemphues KJ. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 1995;83:743–52.

    Article  CAS  PubMed  Google Scholar 

  119. Watts JL, Etemad-Moghadam B, Guo S, Boyd L, Draper BW, Mello CC, et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 1996;122:3133.

    Article  CAS  PubMed  Google Scholar 

  120. Chen S, Chen J, Shi H, Wei M, Castaneda-Castellanos DR, Bultje RS, et al. Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity. Dev Cell 2013;24:26–40.

    Article  CAS  PubMed  Google Scholar 

  121. Morrow A, Underwood J, Seldin L, Hinnant T, Lechler T. Regulated spindle orientation buffers tissue growth in the epidermis. Elife. 2019 Oct 2;8:e48482.

  122. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 2005;437:275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Poulson ND, Lechler T. Robust control of mitotic spindle orientation in the developing epidermis. J Cell Biol 2010;191:915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ying Z, Sandoval M, Beronja S. Oncogenic activation of PI3K induces progenitor cell differentiation to suppress epidermal growth. Nat Cell Biol 2018;20:1256–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brown S, Pineda CM, Xin T, Boucher J, Suozzi KC, Park S, et al. Correction of aberrant growth preserves tissue homeostasis. Nature 2017;548:334–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dias Gomes M, Letzian S, Saynisch M, Iden S. Polarity signaling ensures epidermal homeostasis by coupling cellular mechanics and genomic integrity. Nat Commun 2019;10:3362.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Halaoui R, Rejon C, Chatterjee SJ, Szymborski J, Meterissian S, Muller WJ, et al. Progressive polarity loss and luminal collapse disrupt tissue organization in carcinoma. Genes Dev. 2017;31:1573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huebner RJ, Lechler T, Ewald AJ. Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 2014;141:1085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Feldman JL, Priess JR. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr Biol 2012;22:575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Inaba M, Venkei ZG, Yamashita YM. The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline Elife. 2015 Mar 20;4:e04960.

  131. Bultje RS, Castaneda-Castellanos DR, Jan LY, Jan YN, Kriegstein AR, Shi SH. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron. 2009;63:189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dong Z, Yang N, Yeo SY, Chitnis A, Guo S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuro. 2012;74:65–78.

    CAS  Google Scholar 

  133. Caussinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005;37:1125–9.

    Article  CAS  PubMed  Google Scholar 

  134. Funahashi Y, Namba T, Fujisue S, Itoh N, Nakamuta S, Kato K, et al. ERK2-mediated phosphorylation of Par3 regulates neuronal polarization. J Neurosci 2013;33:13270–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang Y, Du D, Fang L, Yang G, Zhang C, Zeng R, et al. Tyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling. Embo J 2006;25:5058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen X, Macara IG. Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J Cell Biol 2006;172:671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hurd TW, Fan S, Liu CJ, Kweon HK, Hakansson K, Margolis B. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr Biol. 2003;13:2082–90.

    Article  CAS  PubMed  Google Scholar 

  138. Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K, et al. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci 2003;116:3879–91.

    Article  CAS  PubMed  Google Scholar 

  139. Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S, et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). Embo J. 2001;20:3738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 2001;154:491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M, et al. Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J Biol Chem 2003;278:5497–500.

    Article  CAS  PubMed  Google Scholar 

  142. Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K. Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol. 2004;6:328–34.

    Article  CAS  PubMed  Google Scholar 

  143. Wang L, Zhang H, Hasim A, Tuerhong A, Hou Z, Abdurahmam A, et al. Partition-defective 3 (PARD3) regulates proliferation, apoptosis, migration, and invasion in esophageal squamous cell carcinoma cells. Med Sci Monit. 2017;23:2382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zheng JH, Jiao SJ, Na L, Zheng SQ, Ma ZH, Wang SW, et al. Defective expression of polarity protein Par3 promotes cervical tumorigenesis and metastasis. Eur J Gynaecol Oncol. 2015;38:199–206.

    Google Scholar 

  145. Vanlandewijck M, Dadras MS, Lomnytska M, Mahzabin T, Lee Miller M, Busch C, et al. The protein kinase SIK downregulates the polarity protein Par3. Oncotarget 2018;9:5716–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzaneh Atashrazm or Sarah Ellis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atashrazm, F., Ellis, S. The polarity protein PARD3 and cancer. Oncogene 40, 4245–4262 (2021). https://doi.org/10.1038/s41388-021-01813-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01813-6

This article is cited by

Search

Quick links