Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity

Abstract

Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine and critically involved in the progression of a variety of cancers. TGF-β1 signaling can impair tumor development by its anti-proliferative and pro-apoptotic features. In contrast, it may actively promote tumor progression and cancer cell dissemination by inducing a gradual switch from epithelial towards mesenchymal-like cell features (EMT-like), including decreased intercellular adhesion. Here, we show that expression of the transcription factor Basonuclin-1 (Bnc1) modulates TGF-β1-induced epithelial dedifferentiation of mammary epithelial cells. RNAi-mediated repression of Bnc1 resulted in enhanced intercellular adhesion and strongly impaired TGF-β1-dependent sheet disintegration and cell scattering. In contrast, forced expression of Bnc1 modifies plasma membrane/cytoskeletal dynamics and seemingly interferes with the initiation of sustainable cell–cell contacts. Follow-up analyses revealed that Bnc1 affects the expression of numerous TGF-β1-responsive genes including distinct EMT-related transcription factors, some of which modulate the expression of Bnc1 themselves. These results suggest that Bnc1 is part of a transcription factor network related to epithelial plasticity with reciprocal feedback-loop connections on which Smad-factors integrate TGF-β1 signaling. Our study demonstrates that Bnc1 regulates epithelial plasticity of mammary epithelial cells and influences outcome of TGF-β1 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  Google Scholar 

  2. Drabsch Y, Ten Dijke P . TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 2012; 31: 553–568.

    Article  CAS  Google Scholar 

  3. Heldin CH, Vanlandewijck M, Moustakas A . Regulation of EMT by TGFbeta in cancer. FEBS Lett 2012; 586: 1959–1970.

    Article  CAS  Google Scholar 

  4. Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  Google Scholar 

  5. Feuerborn A, Kuffer S, Grone HJ . Forkhead factors regulate epithelial plasticity: impact on cancer progression. Cell Cycle 2011; 10: 2454–2460.

    Article  CAS  Google Scholar 

  6. Mullen AC, Orlando DA, Newman JJ, Lovén J, Kumar RM, Bilodeau S et al. Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell 2011; 147: 565–576.

    Article  CAS  Google Scholar 

  7. Morikawa M, Koinuma D, Miyazono K, Heldin CH . Genome-wide mechanisms of Smad binding. Oncogene 2013; 32: 1609–1615.

    Article  CAS  Google Scholar 

  8. Moustakas A, Heldin CH . Non-Smad TGF-beta signals. J Cell Sci 2005; 118: 3573–3584.

    Article  CAS  Google Scholar 

  9. Deckers M, van Dinther M, Buijs J, Que I, Löwik C, van der Pluijm G et al. The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 2006; 66: 2202–2209.

    Article  CAS  Google Scholar 

  10. Vanhoutteghem A, Bouche C, Maciejewski-Duval A, Herve F, Djian P . Basonuclins and disco: Orthologous zinc finger proteins essential for development in vertebrates and arthropods. Biochimie 2011; 93: 127–133.

    Article  CAS  Google Scholar 

  11. Tseng H . Basonuclin, a zinc finger protein associated with epithelial expansion and proliferation. Front Biosci 1998; 3: D985–D988.

    Article  CAS  Google Scholar 

  12. Mahoney MG, Tang W, Xiang MM, Moss SB, Gerton GL, Stanley JR et al. Translocation of the zinc finger protein basonuclin from the mouse germ cell nucleus to the midpiece of the spermatozoon during spermiogenesis. Biol Reprod 1998; 59: 388–394.

    Article  CAS  Google Scholar 

  13. Tseng H, Matsuzaki K, Lavker RM . Basonuclin in murine corneal and lens epithelia correlates with cellular maturation and proliferative ability. Differentiation 1999; 65: 221–227.

    Article  CAS  Google Scholar 

  14. Zhang X, Chou W, Haig-Ladewig L, Zeng W, Cao W, Gerton G et al. BNC1 is required for maintaining mouse spermatogenesis. Genesis 2012; 50: 517–524.

    Article  CAS  Google Scholar 

  15. Zhang X, Tseng H . Basonuclin-null mutation impairs homeostasis and wound repair in mouse corneal epithelium. PLoS One 2007; 2: e1087.

    Article  Google Scholar 

  16. Zhang S, Wang J, Tseng H . Basonuclin regulates a subset of ribosomal RNA genes in HaCaT cells. PLoS One 2007; 2: e902.

    Article  Google Scholar 

  17. Ma J, Zeng F, Schultz RM, Tseng H . Basonuclin: a novel mammalian maternal-effect gene. Development 2006; 133: 2053–2062.

    Article  CAS  Google Scholar 

  18. Wang J, Zhang S, Schultz RM, Tseng H . Search for basonuclin target genes. Biochem Biophys Res Commun 2006; 348: 1261–1271.

    Article  CAS  Google Scholar 

  19. Shames DS, Girard L, Gao B, Sato M, Lewis CM, Shivapurkar N et al. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med 2006; 3: e486.

    Article  Google Scholar 

  20. Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 2010; 29: 2104–2117.

    Article  CAS  Google Scholar 

  21. Brena RM, Plass C, Costello JF . Mining methylation for early detection of common cancers. PLoS Med 2006; 3: e479.

    Article  Google Scholar 

  22. Guo L, Fan D, Zhang F, Price JE, Lee JS, Marchetti D et al. Selection of brain metastasis-initiating breast cancer cells determined by growth on hard agar. Am J Pathol 2011; 178: 2357–2366.

    Article  CAS  Google Scholar 

  23. Boldrup L, Coates PJ, Laurell G, Nylander K . p63 Transcriptionally regulates BNC1, a Pol I and Pol II transcription factor that regulates ribosomal biogenesis and epithelial differentiation. Eur J Cancer 2012; 48: 1401–1406.

    Article  CAS  Google Scholar 

  24. Feuerborn A, Srivastava PK, Kuffer S, Grandy WA, Sijmonsma TP, Gretz N et al. The Forkhead factor FoxQ1 influences epithelial differentiation. J Cell Physiol 2011; 226: 710–719.

    Article  CAS  Google Scholar 

  25. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM . PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 2002; 18: 333–334.

    Article  CAS  Google Scholar 

  26. Tsunoda T, Takagi T . Estimating transcription factor bindability on DNA. Bioinformatics 1999; 15: 622–630.

    Article  CAS  Google Scholar 

  27. Kwon AT, Arenillas DJ, Worsley Hunt R, Wasserman WW . oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 (Bethesda) 2012; 2: 987–1002.

    Article  CAS  Google Scholar 

  28. Shirakihara T, Saitoh M, Miyazono K . Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell 2007; 18: 3533–3544.

    Article  CAS  Google Scholar 

  29. Xie L, Law BK, Aakre ME, Shyr Y, Bhowmick NA, Moses HL et al. Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 2003; 5: R187–R198.

    Article  CAS  Google Scholar 

  30. Tang Y, Shu G, Yuan X, Jing N, Song J . FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. Cell Res 2011; 21: 316–326.

    Article  CAS  Google Scholar 

  31. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    Article  CAS  Google Scholar 

  32. Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonné S et al. The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett 2007; 581: 1617–1624.

    Article  CAS  Google Scholar 

  33. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E . Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 2009; 11: 1287–1296.

    Article  CAS  Google Scholar 

  34. Gervasi M, Bianchi-Smiraglia A, Cummings M, Zheng Q, Wang D, Liu S et al. JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-beta. J Cell Biol 2012; 196: 589–603.

    Article  CAS  Google Scholar 

  35. Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F et al. Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res 2011; 71: 1292–1301.

    Article  CAS  Google Scholar 

  36. Loerke D, le Duc Q, Blonk I, Kerstens A, Spanjaard E, Machacek M et al. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation. Sci Signal 2012; 5: rs5.

    Article  Google Scholar 

  37. de Rooij J, Kerstens A, Danuser G, Schwartz MA, Waterman-Storer CM . Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J Cell Biol 2005; 171: 153–164.

    Article  CAS  Google Scholar 

  38. Cui C, Elsam T, Tian Q, Seykora JT, Grachtchouk M, Dlugosz A et al. Gli proteins up-regulate the expression of basonuclin in Basal cell carcinoma. Cancer Res 2004; 64: 5651–5658.

    Article  CAS  Google Scholar 

  39. Koinuma D, Tsutsumi S, Kamimura N, Imamura T, Aburatani H, Miyazono K . Promoter-wide analysis of Smad4 binding sites in human epithelial cells. Cancer Sci 2009; 100: 2133–2142.

    Article  CAS  Google Scholar 

  40. Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M et al. Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling. Mol Cell Biol 2009; 29: 172–186.

    Article  CAS  Google Scholar 

  41. Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell 2012; 47: 810–822.

    Article  CAS  Google Scholar 

  42. Dekker J, Rippe K, Dekker M, Kleckner N . Capturing chromosome conformation. Science 2002; 295: 1306–1311.

    Article  CAS  Google Scholar 

  43. Papantonis A, Kohro T, Baboo S, Larkin JD, Deng B, Short P et al. TNFalpha signals through specialized factories where responsive coding and miRNA genes are transcribed. EMBO J 2012; 31: 4404–4414.

    Article  CAS  Google Scholar 

  44. Nakahata S, Yamazaki S, Nakauchi H, Morishita K . Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene 2010; 29: 4157–4169.

    Article  CAS  Google Scholar 

  45. Sundqvist A, Zieba A, Vasilaki E, Herrera Hidalgo C, Söderberg O, Koinuma D et al. Specific interactions between Smad proteins and AP-1 components determine TGFbeta-induced breast cancer cell invasion. Oncogene 2013; 32: 3606–3615.

    Article  CAS  Google Scholar 

  46. Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q . FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res 2011; 71: 3076–3086.

    Article  CAS  Google Scholar 

  47. Kumper S, Ridley AJ . p120ctn and P-cadherin but not E-cadherin regulate cell motility and invasion of DU145 prostate cancer cells. PLoS One 2010; 5: e11801.

    Article  Google Scholar 

  48. Capaldo CT, Macara IG . Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2007; 18: 189–200.

    Article  CAS  Google Scholar 

  49. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ . N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999; 147: 631–644.

    Article  CAS  Google Scholar 

  50. Vasioukhin V, Fuchs E . Actin dynamics and cell-cell adhesion in epithelia. Curr Opin Cell Biol 2001; 13: 76–84.

    Article  CAS  Google Scholar 

  51. Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ et al. The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 2002; 277: 1240–1248.

    Article  CAS  Google Scholar 

  52. Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D . E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 2011; 12: 720–726.

    Article  CAS  Google Scholar 

  53. Nagafuchi A, Takeichi M . Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 1988; 7: 3679–3684.

    Article  CAS  Google Scholar 

  54. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  55. Kenzelmann M, Maertens S, Hergenhahn M, Kueffer S, Hotz-Wagenblatt A, Li L et al. Microarray analysis of newly synthesized RNA in cells and animals. Proc Natl Acad Sci USA 2007; 104: 6164–6169.

    Article  CAS  Google Scholar 

  56. Gautier L, Cope L, Bolstad BM, Irizarry RA . Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307–315.

    Article  CAS  Google Scholar 

  57. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005; 33: e175.

    Article  Google Scholar 

  58. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18: S96–S104.

    Article  Google Scholar 

  59. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  Google Scholar 

  60. Maere S, Heymans K, Kuiper M . BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005; 21: 3448–3449.

    Article  CAS  Google Scholar 

  61. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–2504.

    Article  CAS  Google Scholar 

  62. Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009; 41: 553–562.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge Peter ten Dijke, David Danielpour, Sebastian Diecke and Roderick Beijersbergen for generously providing cells and plasmids. Support by the DKFZ Light Microscopy Facility is gratefully acknowledged. We thank Maria Muciek for excellent assistance with regard to microarray expression profiling and Ann Na Tan for excellent technical support. This study was supported by a grant of the DFG (SFB-938) to HJG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Feuerborn or H-J Gröne.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuerborn, A., Mathow, D., Srivastava, P. et al. Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity. Oncogene 34, 1185–1195 (2015). https://doi.org/10.1038/onc.2014.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.54

This article is cited by

Search

Quick links