Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prokineticin signaling is required for the maintenance of a de novo population of c-KIT+ cells to sustain neuroblastoma progression

Abstract

High cellular heterogeneity within neuroblastomas (NBs) may account for the non-uniform response to treatment. c-KIT+ cells are frequently detected in NB, but how they influence NB behavior still remains elusive. Here, we used NB tumor-initiating cells to reconstitute NB development and demonstrated that c-KIT+ cells are de novo generated and dynamically maintained within the tumors to sustain tumor progression. c-KIT+ NB cells express higher levels of neural crest and stem cell markers (SLUG, SOX2 and NANOG) and are endowed with high clonogenic capacity, differentiation plasticity and are refractory to drugs. With serial transplantation assays, we found that c-KIT expression is not required for tumor formation, but c-KIT+ cells are more aggressive and can induce tumors ninefold more efficiently than c-KIT−/low cells. Intriguingly, c-KIT+ cells exhibited a long-term in vivo self-renewal capacity to sustain the formation of secondary and tertiary tumors in mice. In addition, we showed that Prokineticin signaling and mitogen-activated protein kinase pathways are crucial for the maintenance of c-KIT+ cells in tumor to promote NB progression. Our results highlight the importance of this de novo population of NB cells in sustainable growth of NB and reveal specific signaling pathways that may provide targets leading to more effective NB therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Coulon A, Flahaut M, Muhlethaler-Mottet A, Meier R, Liberman J, Balmas-Bourloud K et al. Functional sphere profiling reveals the complexity of neuroblastoma tumor-initiating cell model. Neoplasia 2011; 13: 991–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hansford LM, McKee AE, Zhang L, George RE, Gerstle JT, Thorner PS et al. Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res 2007; 67: 11234–11243.

    Article  CAS  PubMed  Google Scholar 

  3. Hutt KJ, McLaughlin EA, Holland MK . Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod 2006; 12: 61–69.

    Article  CAS  PubMed  Google Scholar 

  4. Lacham-Kaplan O . In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 2004; 128: 147–152.

    Article  PubMed  Google Scholar 

  5. Luo R, Gao J, Wehrle-Haller B, Henion PD . Molecular identification of distinct neurogenic and melanogenic neural crest sublineages. Development 2003; 130: 321–330.

    Article  CAS  PubMed  Google Scholar 

  6. Vitali R, Cesi V, Nicotra MR, McDowell HP, Donfrancesco A, Mannarino O et al. c-Kit is preferentially expressed in MYCN-amplified neuroblastoma and its effect on cell proliferation is inhibited in vitro by STI-571. Int J Cancer 2003; 106: 147–152.

    Article  CAS  PubMed  Google Scholar 

  7. Chen QR, Song YK, Wei JS, Bilke S, Asgharzadeh S, Seeger RC et al. An integrated cross-platform prognosis study on neuroblastoma patients. Genomics 2008; 92: 195–203.

    Article  CAS  PubMed  Google Scholar 

  8. Liegl-Atzwanger B, Fletcher JA, Fletcher CD . Gastrointestinal stromal tumors. Virchows Arch 2010; 456: 111–127.

    Article  PubMed  Google Scholar 

  9. Krams M, Parwaresch R, Sipos B, Heidorn K, Harms D, Rudolph P . Expression of the c-kit receptor characterizes a subset of neuroblastomas with favorable prognosis. Oncogene 2004; 23: 588–595.

    Article  CAS  PubMed  Google Scholar 

  10. LeCouter J, Kowalski J, Foster J, Hass P, Zhang ZM, Dillard-Telm L et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 2001; 412: 877–884.

    Article  CAS  PubMed  Google Scholar 

  11. Shimada A, Hirato J, Kuroiwa M, Kikuchi A, Hanada R, Wakai K et al. Expression of KIT and PDGFR is associated with a good prognosis in neuroblastoma. Pediatr Blood Cancer 2008; 50: 213–217.

    Article  PubMed  Google Scholar 

  12. Thiele CJ . Neuroblastoma cell lines. In: Masters J (eds). Human Cell Culture, vol. 1. Kluwer Academic Publishers: Lancaster, 1998, pp 21–53.

    Google Scholar 

  13. Uccini S, Mannarino O, McDowell HP, Pauser U, Vitali R, Natali PG et al. Clinical and molecular evidence for c-kit receptor as a therapeutic target in neuroblastic tumors. Clin Cancer Res 2005; 11: 380–389.

    CAS  PubMed  Google Scholar 

  14. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U et al. A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101: 14228–14233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biagiotti T, D'Amico M, Marzi I, Di Gennaro P, Arcangeli A, Wanke E et al. Cell renewing in neuroblastoma: electrophysiological and immunocytochemical characterization of stem cells and derivatives. Stem Cells (Dayton, OH) 2006; 24: 443–453.

    Article  Google Scholar 

  16. Marzi I, D'Amico M, Biagiotti T, Giunti S, Carbone MV, Fredducci D et al. Purging of the neuroblastoma stem cell compartment and tumor regression on exposure to hypoxia or cytotoxic treatment. Cancer Res 2007; 67: 2402–2407.

    Article  CAS  PubMed  Google Scholar 

  17. Nilsson MB, Zage PE, Zeng L, Xu L, Cascone T, Wu HK et al. Multiple receptor tyrosine kinases regulate HIF-1alpha and HIF-2alpha in normoxia and hypoxia in neuroblastoma: implications for antiangiogenic mechanisms of multikinase inhibitors. Oncogene 2010; 29: 2938–2949.

    Article  CAS  PubMed  Google Scholar 

  18. Jogi A, Ora I, Nilsson H, Lindeheim A, Makino Y, Poellinger L et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 2002; 99: 7021–7026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ngan ES, Sit FY, Lee K, Miao X, Yuan Z, Wang W et al. Implications of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 signaling in human neuroblastoma progression. Clin Cancer Res 2007; 13: 868–875.

    Article  CAS  PubMed  Google Scholar 

  20. Pietras A, Gisselsson D, Ora I, Noguera R, Beckman S, Navarro S et al. High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol 2008; 214: 482–488.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen PS, Chan JP, Lipkunskaya M, Biedler JL, Seeger RC . Expression of stem cell factor and c-kit in human neuroblastoma. The Children's Cancer Group. Blood 1994; 84: 3465–3472.

    CAS  PubMed  Google Scholar 

  22. Asgharzadeh S, Pique-Regi R, Sposto R, Wang H, Yang Y, Shimada H et al. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 2006; 98: 1193–1203.

    Article  CAS  PubMed  Google Scholar 

  23. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. Distinct sets of genetic alterations in melanoma. New Engl J Med 2005; 353: 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  24. Gomes AL, Reis-Filho JS, Lopes JM, Martinho O, Lambros MB, Martins A et al. Molecular alterations of KIT oncogene in gliomas. Cell Oncol 2007; 29: 399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bellone G, Smirne C, Carbone A, Buffolino A, Scirelli T, Prati A et al. KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and outcomes. Int J Oncol 2006; 29: 851–859.

    CAS  PubMed  Google Scholar 

  26. Krystal GW, Hines SJ, Organ CP . Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res 1996; 56: 370–376.

    CAS  PubMed  Google Scholar 

  27. Pietras A, Hansford LM, Johnsson AS, Bridges E, Sjolund J, Gisselsson D et al. HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc Natl Acad Sci USA 2009; 106: 16805–16810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pittoni P, Piconese S, Tripodo C, Colombo MP . Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 2011; 30: 757–769.

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 2002; 100: 1274–1286.

    CAS  PubMed  Google Scholar 

  30. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146: 633–644.

    Article  CAS  PubMed  Google Scholar 

  32. Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 2006; 24: 5070–5078.

    Article  CAS  PubMed  Google Scholar 

  33. Walton JD, Kattan DR, Thomas SK, Spengler BA, Guo HF, Biedler JL et al. Characteristics of stem cells from human neuroblastoma cell lines and in tumors. Neoplasia 2004; 6: 838–845.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Seed funding grant for basic research from the University of Hong Kong, General Research Grant HKU773909 from the Hong Kong Research Grants Council, research grant from Hong Kong Children’s Cancer Foundation and SK Yee Medical Research Fund to ES-WN. Small project grant from the University of Hong Kong to S-TL. We thank Robin Lovell-Badge (MRC National Institute for Medical Research, London, UK) and Chi-Chung Hui (University of Toronto, Canada) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S-W Ngan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, ST., Hansford, L., Chan, WK. et al. Prokineticin signaling is required for the maintenance of a de novo population of c-KIT+ cells to sustain neuroblastoma progression. Oncogene 34, 1019–1034 (2015). https://doi.org/10.1038/onc.2014.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.24

This article is cited by

Search

Quick links