Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

PAG - a multipurpose transmembrane adaptor protein

Abstract

Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), also known as Csk-binding protein (Cbp), is a ubiquitously expressed transmembrane adaptor protein present in lipid rafts and involved in a number of signaling pathways. It helps recruit cytoplasmic C-terminal Src kinase (Csk) to lipid raft-associated Src kinases, mediates a link to actin cytoskeleton and interacts with several other important cytoplasmic and plasma membrane-associated proteins. In recent years, PAG has been implicated in various aspects of cancer cell biology. Our review covers all so far published data on this interesting protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ALL:

acute lymphoblastic leukemia 

BCR:

B-cell receptor

Cbp:

Csk-binding protein

DRM:

detergent-resistant membrane microdomain

Epo:

erythropoietin

NSCLC:

non-small cell lung cancer

PAG:

phosphoprotein associated with glycosphingolipid-enriched microdomains

PTP:

protein tyrosine phosphatase

RCC:

renal cell carcinomas

SH2, SH3:

Src homology domain

SFK:

Src family kinase

TCR:

T-cell receptor

TRAP:

transmembrane adaptor protein

References

  1. Humphrey MB, Lanier LL, Nakamura MC . Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev 2005; 208: 50–65.

    CAS  PubMed  Google Scholar 

  2. Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA . The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev 2009; 232: 42–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lanier LL . DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 2009; 227: 150–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Owen DM, Magenau A, Williamson D, Gaus K . The lipid raft hypothesis revisited-new insights on raft composition and function from super-resolution fluorescence microscopy. Bioessays 2012; 34: 739–747.

    CAS  PubMed  Google Scholar 

  5. Lingwood D, Simons K . Lipid rafts as a membrane-organizing principle. Science 2010; 327: 46–50.

    CAS  PubMed  Google Scholar 

  6. Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z et al. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu Rev Cell Dev Biol 2012; 28: 215–250.

    CAS  PubMed  Google Scholar 

  7. Horejsi V, Zhang W, Schraven B . Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 2004; 4: 603–616.

    CAS  PubMed  Google Scholar 

  8. Baniyash M . TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol 2004; 4: 675–687.

    CAS  PubMed  Google Scholar 

  9. Palacios EH, Weiss A . Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 2004; 23: 7990–8000.

    CAS  PubMed  Google Scholar 

  10. Rivera J . NTAL/LAB and LAT: a balancing act in mast-cell activation and function. Trends Immunol 2005; 26: 119–122.

    CAS  PubMed  Google Scholar 

  11. Simeoni L, Smida M, Posevitz V, Schraven B, Lindquist JA . Right time, right place: the organization of membrane proximal signaling. Semin Immunol 2005; 17: 35–49.

    CAS  PubMed  Google Scholar 

  12. Iwaki S, Jensen BM, Gilfillan AM . Ntal/Lab/Lat2. Int J Biochem Cell Biol 2007; 39: 868–873.

    CAS  PubMed  Google Scholar 

  13. Abram CL, Lowell CA . The expanding role for ITAM-based signaling pathways in immune cells. Sci STKE 2007; 377: re2.

    Google Scholar 

  14. Turnbull IR, Colonna M . Activating and inhibitory functions of DAP12. Nat Rev Immunol 2007; 7: 155–161.

    CAS  PubMed  Google Scholar 

  15. Fuller DM, Zhang W . Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol Rev 2009; 232: 72–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Park I, Yun Y . Transmembrane adaptor proteins positively regulating the activation of lymphocytes. Immune Netw 2009; 9: 53–57.

    PubMed  PubMed Central  Google Scholar 

  17. Capitani N, Lucherini OM, Baldari CT . Negative regulation of immunoreceptor signaling by protein adapters: Shc proteins join the club. FEBS Lett 2010; 584: 4915–4922.

    CAS  PubMed  Google Scholar 

  18. Fuller DM, Zhu M, Ou-Yang CW, Sullivan SA, Zhang W . A tale of two TRAPs: LAT and LAB in the regulation of lymphocyte development, activation, and autoimmunity. Immunol Res 2011; 49: 97–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Svec A . Phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk-binding protein: a protein that matters. Pathol Res Pract 2008; 204: 785–792.

    CAS  PubMed  Google Scholar 

  20. Cinek T, Horejsi V . The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol 1992; 149: 2262–2270.

    CAS  PubMed  Google Scholar 

  21. Draberova L, Draber P . Thy-1 glycoprotein and src-like protein-tyrosine kinase p53/p56lyn are associated in large detergent-resistant complexes in rat basophilic leukemia cells. Proc Natl Acad Sci USA 1993; 90: 3611–3615.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Garnett D, Barclay AN, Carmo AM, Beyers AD . The association of the protein tyrosine kinases p56lck and p60fyn with the glycosyl phosphatidylinositol-anchored proteins Thy-1 and CD48 in rat thymocytes is dependent on the state of cellular activation. Eur J Immunol 1993; 23: 2540–2544.

    CAS  PubMed  Google Scholar 

  23. Ilangumaran S, Arni S, van Echten-Deckert G, Borisch B, Hoessli DC . Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol Biol Cell 1999; 10: 891–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marie-Cardine A, Bruyns E, Eckerskorn C, Kirchgessner H, Meuer SC, Schraven B . Molecular cloning of SKAP55, a novel protein that associates with the protein tyrosine kinase p59fyn in human T-lymphocytes. J Biol Chem 1997; 272: 16077–16080.

    CAS  PubMed  Google Scholar 

  25. Marie-Cardine A, Kirchgessner H, Schraven B . Molecular alterations of the Fyn-complex occur as late events of human T cell activation. Eur J Immunol 1999; 29: 1175–1187.

    CAS  PubMed  Google Scholar 

  26. Brdicka T, Pavlistova D, Leo A, Bruyns E, Korinek V, Angelisova P et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J Exp Med 2000; 191: 1591–1604.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 2000; 404: 999–1003.

    CAS  PubMed  Google Scholar 

  28. Inomata M, Shimada Y, Hayashi M, Shimizu J, Ohno-Iwashita Y . Impairment in a negative regulatory system for TCR signaling in CD4+ T cells from old mice. FEBS Lett 2007; 581: 3039–3043.

    CAS  PubMed  Google Scholar 

  29. Awasthi-Kalia M, Schnetkamp PP, Deans JP . Differential effects of filipin and methyl-beta-cyclodextrin on B cell receptor signaling. Biochem Biophys Res Commun 2001; 287: 77–82.

    CAS  PubMed  Google Scholar 

  30. Tedoldi S, Paterson JC, Hansmann ML, Natkunam Y, Rudiger T, Angelisova P et al. Transmembrane adaptor molecules: a new category of lymphoid-cell markers. Blood 2006; 107: 213–221.

    CAS  PubMed  Google Scholar 

  31. Svojgr K, Burjanivova T, Vaskova M, Kalina T, Stary J, Trka J et al. Adaptor molecules expression in normal lymphopoiesis and in childhood leukemia. Immunol Lett 2009; 122: 185–192.

    CAS  PubMed  Google Scholar 

  32. Svec A, Velenska Z, Horejsi V . Expression pattern of adaptor protein PAG: correlation between secondary lymphatic follicle and histogenetically related malignant lymphomas. Immunol Lett 2005; 100: 94–97.

    CAS  PubMed  Google Scholar 

  33. Matsubara T, Ikeda F, Hata K, Nakanishi M, Okada M, Yasuda H et al. Cbp recruitment of Csk into lipid rafts is critical to c-Src kinase activity and bone resorption in osteoclasts. J Bone Miner Res 2010; 25: 1068–1076.

    CAS  PubMed  Google Scholar 

  34. Relucio J, Tzvetanova ID, Ao W, Lindquist S, Colognato H . Laminin alters fyn regulatory mechanisms and promotes oligodendrocyte development. J Neurosci 2009; 29: 11794–11806.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Takeuchi S . Expression and purification of human PAG, a transmembrane adapter protein using an insect cell expression system and its structure basis. Protein J 2006; 25: 295–299.

    CAS  PubMed  Google Scholar 

  36. Posevitz-Fejfar A, Smida M, Kliche S, Hartig R, Schraven B, Lindquist JA . A displaced PAG enhances proximal signaling and SDF-1-induced T cell migration. Eur J Immunol 2008; 38: 250–259.

    CAS  PubMed  Google Scholar 

  37. Shimada Y, Inomata M, Suzuki H, Hayashi M, Waheed AA, Ohno-Iwashita Y . Separation of a cholesterol-enriched microdomain involved in T-cell signal transduction. FEBS J 2005; 272: 5454–5463.

    CAS  PubMed  Google Scholar 

  38. Sekino-Suzuki N, Yuyama K, Miki T, Kaneda M, Suzuki H, Yamamoto N et al. Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J Neurochem 2013; 124: 514–522.

    CAS  PubMed  Google Scholar 

  39. Mutch CM, Sanyal R, Unruh TL, Grigoriou L, Zhu M, Zhang W et al. Activation-induced endocytosis of the raft-associated transmembrane adaptor protein LAB/NTAL in B lymphocytes: evidence for a role in internalization of the B cell receptor. Int Immunol 2007; 19: 19–30.

    CAS  PubMed  Google Scholar 

  40. Shima T, Nada S, Okada M . Transmembrane phosphoprotein Cbp senses cell adhesion signaling mediated by Src family kinase in lipid rafts. Proc Natl Acad Sci USA 2003; 100: 14897–14902.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang LQ, Feng X, Zhou W, Knyazev PG, Ullrich A, Chen Z . Csk-binding protein (Cbp) negatively regulates epidermal growth factor-induced cell transformation by controlling Src activation. Oncogene 2006; 25: 5495–5506.

    Article  CAS  PubMed  Google Scholar 

  42. Ingley E, Schneider JR, Payne CJ, McCarthy DJ, Harder KW, Hibbs ML et al. Csk-binding protein mediates sequential enzymatic down-regulation and degradation of Lyn in erythropoietin-stimulated cells. J Biol Chem 2006; 281: 31920–31929.

    CAS  PubMed  Google Scholar 

  43. Yasuda K, Nagafuku M, Shima T, Okada M, Yagi T, Yamada T et al. Cutting edge: Fyn is essential for tyrosine phosphorylation of Csk-binding protein/phosphoprotein associated with glycolipid-enriched microdomains in lipid rafts in resting T cells. J Immunol 2002; 169: 2813–2817.

    CAS  PubMed  Google Scholar 

  44. Cao L, Ding Y, Hung N, Yu K, Ritz A, Raphael BJ et al. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells. PLoS One 2012; 7: e46725.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu Y, Huntington ND, Harder KW, Nandurkar H, Hibbs ML, Tarlinton DM . Phosphatidylinositol-3 kinase activity in B cells is negatively regulated by Lyn tyrosine kinase. Immunol Cell Biol 2012; 90: 903–911.

    CAS  PubMed  Google Scholar 

  46. Odom S, Gomez G, Kovarova M, Furumoto Y, Ryan JJ, Wright HV et al. Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase. J Exp Med 2004; 199: 1491–1502.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsuoka H, Nada S, Okada M . Mechanism of Csk-mediated down-regulation of Src family tyrosine kinases in epidermal growth factor signaling. J Biol Chem 2004; 279: 5975–5983.

    CAS  PubMed  Google Scholar 

  48. Takeuchi S, Takayama Y, Ogawa A, Tamura K, Okada M . Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J Biol Chem 2000; 275: 29183–29186.

    CAS  PubMed  Google Scholar 

  49. Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A . Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 2003; 23: 2017–2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 2004; 13: 341–355.

    Article  PubMed  Google Scholar 

  51. Maksumova L, Le HT, Muratkhodjaev F, Davidson D, Veillette A, Pallen CJ . Protein tyrosine phosphatase alpha regulates Fyn activity and Cbp/PAG phosphorylation in thymocyte lipid rafts. J Immunol 2005; 175: 7947–7956.

    CAS  PubMed  Google Scholar 

  52. Durrheim GA, Garnett D, Dennehy KM, Beyers AD . Thy-1 associated pp85--90 is a potential docking site for SH2 domain-containing signal transduction molecules. Cell Biol Int 2001; 25: 33–42.

    CAS  PubMed  Google Scholar 

  53. Tanaka H, Akagi KI, Oneyama C, Tanaka M, Sasaki Y, Kanou T et al. Identification of a new interaction mode between the Src homology 2 (SH2) domain of C-terminal Src kinase (Csk) and Csk-binding protein (Cbp)/phosphoprotein associated with glycosphingolipid microdomains (PAG). J Biol Chem 2013; 288: 15240–15254.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong L, Lieser SA, Miyashita O, Miller M, Tasken K, Onuchic JN et al. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. J Mol Biol 2005; 351: 131–143.

    CAS  PubMed  Google Scholar 

  55. Solheim SA, Torgersen KM, Tasken K, Berge T . Regulation of FynT function by dual domain docking on PAG/Cbp. J Biol Chem 2008; 283: 2773–2783.

    CAS  PubMed  Google Scholar 

  56. Solheim SA, Petsalaki E, Stokka AJ, Russell RB, Tasken K, Berge T . Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity. FEBS J 2008; 275: 4863–4874.

    CAS  PubMed  Google Scholar 

  57. Davidson D, Schraven B, Veillette A . PAG-associated FynT regulates calcium signaling and promotes anergy in T lymphocytes. Mol Cell Biol 2007; 27: 1960–1973.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalland ME, Solheim SA, Skanland SS, Tasken K, Berge T . Modulation of proximal signaling in normal and transformed B cells by transmembrane adapter Cbp/PAG. Exp Cell Res 2012; 318: 1611–1619.

    CAS  PubMed  Google Scholar 

  59. Tauzin S, Ding H, Khatib K, Ahmad I, Burdevet D, van Echten-Deckert G et al. Oncogenic association of the Cbp/PAG adaptor protein with the Lyn tyrosine kinase in human B-NHL rafts. Blood 2008; 111: 2310–2320.

    CAS  PubMed  Google Scholar 

  60. Oneyama C, Hikita T, Enya K, Dobenecker MW, Saito K, Nada S et al. The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell 2008; 30: 426–436.

    CAS  PubMed  Google Scholar 

  61. Hermiston ML, Xu Z, Majeti R, Weiss A . Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest 2002; 109: 9–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cloutier JF, Veillette A . Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J 1996; 15: 4909–4918.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Davidson D, Cloutier JF, Gregorieff A, Veillette A . Inhibitory tyrosine protein kinase p50csk is associated with protein-tyrosine phosphatase PTP-PEST in hemopoietic and non-hemopoietic cells. J Biol Chem 1997; 272: 23455–23462.

    CAS  PubMed  Google Scholar 

  64. Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM . Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 1999; 93: 2013–2024.

    CAS  PubMed  Google Scholar 

  65. Vang T, Liu WH, Delacroix L, Wu S, Vasile S, Dahl R et al. LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol 2012; 8: 437–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hermiston ML, Zikherman J, Zhu JW . CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228: 288–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Okada M . Regulation of the SRC family kinases by Csk. Int J Biol Sci 2012; 8: 1385–1397.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Torgersen KM, Vang T, Abrahamsen H, Yaqub S, Horejsi V, Schraven B et al. Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J Biol Chem 2001; 276: 29313–29318.

    CAS  PubMed  Google Scholar 

  69. Rahmouni S, Vang T, Alonso A, Williams S, van Stipdonk M, Soncini C et al. Removal of C-terminal SRC kinase from the immune synapse by a new binding protein. Mol Cell Biol 2005; 25: 2227–2241.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Itoh K, Sakakibara M, Yamasaki S, Takeuchi A, Arase H, Miyazaki M et al. Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. J Immunol 2002; 168: 541–544.

    CAS  PubMed  Google Scholar 

  71. Marinari B, Simeoni L, Schraven B, Piccolella E, Tuosto L . The activation of Csk by CD4 interferes with TCR-mediated activatory signaling. Eur J Immunol 2003; 33: 2609–2618.

    CAS  PubMed  Google Scholar 

  72. Bamberger M, Santos AM, Goncalves CM, Oliveira MI, James JR, Moreira A et al. A new pathway of CD5 glycoprotein-mediated T cell inhibition dependent on inhibitory phosphorylation of Fyn kinase. J Biol Chem 2011; 286: 30324–30336.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zheng Y, Zha Y, Gajewski TF . Molecular regulation of T-cell anergy. EMBO Rep 2008; 9: 50–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Smida M, Posevitz-Fejfar A, Horejsi V, Schraven B, Lindquist JA . A novel negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched microdomains: blocking Ras activation. Blood 2007; 110: 596–615.

    CAS  PubMed  Google Scholar 

  75. Vang T, Abrahamsen H, Myklebust S, Horejsi V, Tasken K . Combined spatial and enzymatic regulation of Csk by cAMP and protein kinase a inhibits T cell receptor signaling. J Biol Chem 2003; 278: 17597–17600.

    CAS  PubMed  Google Scholar 

  76. Stokka AJ, Mosenden R, Ruppelt A, Lygren B, Tasken K . The adaptor protein EBP50 is important for localization of the protein kinase A-Ezrin complex in T-cells and the immunomodulating effect of cAMP. Biochem J 2010; 425: 381–388.

    CAS  Google Scholar 

  77. Cornez I, Tasken K . Spatiotemporal control of cyclic AMP immunomodulation through the PKA-Csk inhibitory pathway is achieved by anchoring to an Ezrin-EBP50-PAG scaffold in effector T cells. FEBS Lett 2010; 584: 2681–2688.

    CAS  PubMed  Google Scholar 

  78. Mosenden R, Tasken K . Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells. Cell Signal 2011; 23: 1009–1016.

    CAS  PubMed  Google Scholar 

  79. Xu S, Huo J, Tan JE, Lam KP . Cbp deficiency alters Csk localization in lipid rafts but does not affect T-cell development. Mol Cell Biol 2005; 25: 8486–8495.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dobenecker MW, Schmedt C, Okada M, Tarakhovsky A . The ubiquitously expressed Csk adaptor protein Cbp is dispensable for embryogenesis and T-cell development and function. Mol Cell Biol 2005; 25: 10533–10542.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lindquist S, Karitkina D, Langnaese K, Posevitz-Fejfar A, Schraven B, Xavier R et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains differentially modulates SRC kinase activity in brain maturation. PLoS One 2011; 6: e23978.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Stepanek O, Draber P, Drobek A, Horejsi V, Brdicka T . Nonredundant roles of Src-family kinases and Syk in the initiation of B-cell antigen receptor signaling. J Immunol 2013; 190: 1807–1818.

    CAS  PubMed  Google Scholar 

  83. Ohtake H, Ichikawa N, Okada M, Yamashita T . Cutting edge: transmembrane phosphoprotein Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains as a negative feedback regulator of mast cell signaling through the FcepsilonRI. J Immunol 2002; 168: 2087–2090.

    CAS  PubMed  Google Scholar 

  84. Kitaura J, Kawakami Y, Maeda-Yamamoto M, Horejsi V, Kawakami T . Dysregulation of Src family kinases in mast cells from epilepsy-resistant ASK versus epilepsy-prone EL mice. J Immunol 2007; 178: 455–462.

    CAS  PubMed  Google Scholar 

  85. Hong H, Kitaura J, Xiao W, Horejsi V, Ra C, Lowell CA et al. The Src family kinase Hck regulates mast cell activation by suppressing an inhibitory Src family kinase Lyn. Blood 2007; 110: 2511–2519.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vacaresse N, Moller B, Danielsen EM, Okada M, Sap J . Activation of c-Src and Fyn kinases by protein-tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization. J Biol Chem 2008; 283: 35815–35824.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rey-Barroso J, Colo GP, Alvarez-Barrientos A, Redondo-Munoz J, Carvajal-Gonzalez JM, Mulero-Navarro S et al. The dioxin receptor controls beta1 integrin activation in fibroblasts through a Cbp-Csk-Src pathway. Cell Signal 2013; 25: 848–859.

    CAS  PubMed  Google Scholar 

  88. Yu L, Lin Q, Feng J, Dong X, Chen W, Liu Q et al. Inhibition of nephrin activation by c-mip through Csk-Cbp-Fyn axis plays a critical role in Angiotensin II-induced podocyte damage. Cell Signal 2013; 25: 581–588.

    CAS  PubMed  Google Scholar 

  89. Soriano P, Montgomery C, Geske R, Bradley A . Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64: 693–702.

    CAS  PubMed  Google Scholar 

  90. Georgakopoulos A, Xu J, Xu C, Mauger G, Barthet G, Robakis NK . Presenilin1/{gamma}-secretase promotes the EphB2-induced phosphorylation of ephrinB2 by regulating phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk binding protein. FASEB J 2011; 25: 3594–3604.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Veracini L, Simon V, Richard V, Schraven B, Horejsi V, Roche S et al. The Csk-binding protein PAG regulates PDGF-induced Src mitogenic signaling via GM1. J Cell Biol 2008; 182: 603–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Saito K, Enya K, Oneyama C, Hikita T, Okada M . Proteomic identification of ZO-1/2 as a novel scaffold for Src/Csk regulatory circuit. Biochem Biophys Res Commun 2008; 366: 969–975.

    CAS  PubMed  Google Scholar 

  93. Brdickova N, Brdicka T, Andera L, Spicka J, Angelisova P, Milgram SL et al. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett 2001; 507: 133–136.

    CAS  PubMed  Google Scholar 

  94. Gupta N, Wollscheid B, Watts JD, Scheer B, Aebersold R, DeFranco AL . Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 2006; 7: 625–633.

    CAS  PubMed  Google Scholar 

  95. Ruppelt A, Mosenden R, Gronholm M, Aandahl EM, Tobin D, Carlson CR et al. Inhibition of T cell activation by cyclic adenosine 5'-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin. J Immunol 2007; 179: 5159–5168.

    CAS  PubMed  Google Scholar 

  96. Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H . GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 1991; 254: 1016–1019.

    CAS  PubMed  Google Scholar 

  97. Horejsi V, Cebecauer M, Cerny J, Brdicka T, Angelisova P, Drbal K . Signal transduction in leucocytes via GPI-anchored proteins: an experimental artefact or an aspect of immunoreceptor function? Immunol Lett 1998; 63: 63–73.

    CAS  PubMed  Google Scholar 

  98. Chen Y, Veracini L, Benistant C, Jacobson K . The transmembrane protein CBP plays a role in transiently anchoring small clusters of Thy-1, a GPI-anchored protein, to the cytoskeleton. J Cell Sci 2009; 122: 3966–3972.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Suzuki K, Oneyama C, Kimura H, Tajima S, Okada M . Down-regulation of the tumor suppressor C-terminal Src kinase (Csk)-binding protein (Cbp)/PAG1 is mediated by epigenetic histone modifications via the mitogen-activated protein kinase (MAPK)/phosphatidylinositol 3-kinase (PI3K) pathway. J Biol Chem 2011; 286: 15698–15706.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Resh MD . The ups and downs of SRC regulation: tumor suppression by Cbp. Cancer Cell 2008; 13: 469–471.

    CAS  PubMed  Google Scholar 

  101. Oneyama C, Iino T, Saito K, Suzuki K, Ogawa A, Okada M . Transforming potential of Src family kinases is limited by the cholesterol-enriched membrane microdomain. Mol Cell Biol 2009; 29: 6462–6472.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sirvent A, Benistant C, Pannequin J, Veracini L, Simon V, Bourgaux JF et al. Src family tyrosine kinases-driven colon cancer cell invasion is induced by Csk membrane delocalization. Oncogene 2010; 29: 1303–1315.

    CAS  PubMed  Google Scholar 

  103. Kanou T, Oneyama C, Kawahara K, Okimura A, Ohta M, Ikeda N et al. The transmembrane adaptor Cbp/PAG1 controls the malignant potential of human non-small cell lung cancers that have c-src upregulation. Mol Cancer Res 2011; 9: 103–114.

    CAS  PubMed  Google Scholar 

  104. Zhou D, Zhang AP, Liu T, Li ZY, Yang YZ, Song RZ . [Expression of Csk-binding protein in esophageal carcinoma and its possible implications]. Nan Fang Yi Ke Da Xue Xue Bao 2011; 31: 1781–1783.

    CAS  PubMed  Google Scholar 

  105. Baumgartner M, Angelisova P, Setterblad N, Mooney N, Werling D, Horejsi V et al. Constitutive exclusion of Csk from Hck-positive membrane microdomains permits Src kinase-dependent proliferation of Theileria-transformed B lymphocytes. Blood 2003; 101: 1874–1881.

    CAS  PubMed  Google Scholar 

  106. Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K . Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 2009; 8: 1501–1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Feng X, Lu X, Man X, Zhou W, Jiang LQ, Knyazev P et al. Overexpression of Csk-binding protein contributes to renal cell carcinogenesis. Oncogene 2009; 28: 3320–3331.

    CAS  PubMed  Google Scholar 

  108. Ke Q, Wu J, Ming B, Zhu S, Yu M, Wang Y et al. Identification of the PAG1 gene as a novel target of inherent radioresistance in human laryngeal carcinoma cells. Cancer Biother Radiopharm 2012; 27: 678–684.

    CAS  PubMed  Google Scholar 

  109. Tauzin S, Ding H, Burdevet D, Borisch B, Hoessli DC . Membrane-associated signaling in human B-lymphoma lines. Exp Cell Res 2011; 317: 151–162.

    CAS  PubMed  Google Scholar 

  110. Yerly S, Ding H, Tauzin S, van Echten-Deckert G, Borisch B, Hoessli DC . The sphingolipid-rich rafts of ALK+ lymphomas downregulate the Lyn-Cbp/PAG signalosome. Eur J Haematol 2010; 85: 93–98.

    CAS  PubMed  Google Scholar 

  111. Semac I, Palomba C, Kulangara K, Klages N, van Echten-Deckert G, Borisch B et al. Anti-CD20 therapeutic antibody rituximab modifies the functional organization of rafts/microdomains of B lymphoma cells. Cancer Res 2003; 63: 534–540.

    CAS  PubMed  Google Scholar 

  112. Whiting RJ, Payne CJ, Satiaputra J, Kucera N, Qiu TW, Irtegun S et al. Targeting Lyn tyrosine kinase through protein fusions encompassing motifs of Cbp (Csk-binding protein) and the SOCS box of SOCS1. Biochem J 2012; 442: 611–620.

    CAS  PubMed  Google Scholar 

  113. Nada S, Yagi T, Takeda H, Tokunaga T, Nakagawa H, Ikawa Y et al. Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell 1993; 73: 1125–1135.

    CAS  PubMed  Google Scholar 

  114. Schmedt C, Saijo K, Niidome T, Kuhn R, Aizawa S, Tarakhovsky A . Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 1998; 394: 901–904.

    CAS  PubMed  Google Scholar 

  115. Hur EM, Son M, Lee OH, Choi YB, Park C, Lee H et al. LIME, a novel transmembrane adaptor protein, associates with p56lck and mediates T cell activation. J Exp Med 2003; 198: 1463–1473.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Brdickova N, Brdicka T, Angelisova P, Horvath O, Spicka J, Hilgert I et al. LIME: a new membrane Raft-associated adaptor protein involved in CD4 and CD8 coreceptor signaling. J Exp Med 2003; 198: 1453–1462.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 2000; 14: 1750–1775.

    CAS  PubMed  Google Scholar 

  118. Cao H, Courchesne WE, Mastick CC . A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 2002; 277: 8771–8774.

    CAS  PubMed  Google Scholar 

  119. Marie-Cardine A, Kirchgessner H, Bruyns E, Shevchenko A, Mann M, Autschbach F et al. SHP2-interacting transmembrane adaptor protein (SIT), a novel disulfide-linked dimer regulating human T cell activation. J Exp Med 1999; 189: 1181–1194.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Baumeister U, Funke R, Ebnet K, Vorschmitt H, Koch S, Vestweber D . Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 2005; 24: 1686–1695.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Draber P, Vonkova I, Stepanek O, Hrdinka M, Kucova M, Skopcova T et al. SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol Cell Biol 2011; 31: 4550–4562.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sabe H, Hata A, Okada M, Nakagawa H, Hanafusa H . Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src. Proc Natl Acad Sci USA 1994; 91: 3984–3988.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Schaller MD, Parsons JT . pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 1995; 15: 2635–2645.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Neet K, Hunter T . The nonreceptor protein-tyrosine kinase CSK complexes directly with the GTPase-activating protein-associated p62 protein in cells expressing v-Src or activated c-Src. Mol Cell Biol 1995; 15: 4908–4920.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao M, Janas JA, Niki M, Pandolfi PP, Van Aelst L . Dok-1 independently attenuates Ras/mitogen-activated protein kinase and Src/c-myc pathways to inhibit platelet-derived growth factor-induced mitogenesis. Mol Cell Biol 2006; 26: 2479–2489.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Place AT, Chen Z, Bakhshi FR, Liu G, O’Bryan JP, Minshall RD . Cooperative role of caveolin-1 and C-terminal Src kinase binding protein in C-terminal Src kinase-mediated negative regulation of c-Src. Mol Pharmacol 2011; 80: 665–672.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. P302-12-G101 from the Czech Science Foundation and by the Institute of Molecular Genetics ASCR (RVO 68378050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Horejsi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrdinka, M., Horejsi, V. PAG - a multipurpose transmembrane adaptor protein. Oncogene 33, 4881–4892 (2014). https://doi.org/10.1038/onc.2013.485

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.485

Keywords

This article is cited by

Search

Quick links